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Abstract 

The extinction probability or the mean extinction time is one of the most useful 

endpoints that are utilized in conservation biology. A parallel approach is advocated for 

the ecological risk assessment of chemical pollutants. The presented framework 

estimates extinction probability induced by pollutant chemicals in order to evaluate 

ecological hazards of pollution. The analytical framework, which is based on stochastic 

population dynamics theory, is briefly explained. The extinction risk estimation is 

feasible if ecotoxicological data concerning pollutant effects on population growth rate 

of organisms (the intrinsic rate of natural increase), and if environmental exposure 

concentration is provided. Tentative risk estimation was practiced for some 

agrochemicals and surfactants on zooplankton populations (Daphnia) as target 

organisms.   
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Introduction 

Estimation of population-level effects of chemical pollutants is a basis of ecological risk 

assessment. Extinction risk of populations or species is one of the most universal 

criteria for measuring ecological hazard by qualitatively different factors, e.g., 

destruction of habitats, over-hunting and chemical pollution (Soule 1986; Suter 1993; 

Burgman et al. 1993; Caughley and Gunn, 1996). To discuss on the relevance of the 

extinction risk estimation in the context of ecological risk assessment is not the scope of 

this paper (but see Tanaka and Nakanishi [2000], Iwasa [2001]). Nonetheless, we should 

state that the present analysis is based on the perspective that application of the 

population vulnerability analysis (PVA), which is based on estimation of extinction 

probability, developed in conservation biology to the ecological risk assessment is one 

of the best ways to introduce ecology or conservation biology into environmental 

toxicology.   

To evaluate the adverse effects of pollutant chemicals on population extinction, 

effects on the intrinsic rate of natural increase, r, must be estimated because r 

determines the probability of population extinction (Lande 1993; Foley 1994; 

Hakoyama and Iwasa 2000). 

  In quantitative risk evaluation of chemical pollutants, dose-response relationships 

should be based on fine empirical grounds. Some recent studies have stressed the 

importance of intrinsic rate of natural increase as an endpoint response to exposure by 

pollutant chemicals, and examined the relationships between the responses in r and 

acute effects (Calow et al. 1997; Walthall and Stark 1997; Forbes and Calow 1999; 

Roex et al. 2000). Nonetheless, as for the dose-response relationships in terms of r, very 

few statistical analyses based on mathematical models have been conducted (Tanaka 
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and Nakanishi 2001). A previous study has reviewed ecotoxicological data that 

estimated adverse effects of pollutant chemicals on r, and concluded that the power 

function model was one of the most relevant dose-response functions and the power was 

approximately 1.84 (Tanaka and Nakanishi 2001). We also estimated acute-chronic 

regression slopes in terms of the estimated parameter values and acute LC50s.    

  Using the derived dose-response function and exposure date of some pollutant 

chemicals, an ecological risk assessment is presented based on increments of extinction 

probability, which is equivalent to instantaneous rate of extinction and is approximately 

equal to the inverse of mean extinction time.   

         

Analytical Methods 

Mean Extinction Time and the Stochastic Model of Populations 

The present framework is based on the analytical solutions for mean extinction time 

(MET) of the stochastic population dynamics model with the diffusion approximation 

(Lande 1993; Foley 1994; Hakoyama and Iwasa 2000; reviewed by Iwasa 2001). Under 

this approximation populations of organisms are subject to random Brownian motions 

due to several stochastic factors, i.e., environmental stochasticity, demographic 

stochasticity, and catastrophic events (e.g., forest fires and outbreaks of diseases). Even 

focusing on a single common factor, predictions of MET vary noticeably between 

theoretical models that are based on different mathematical assumptions. Nonetheless, 

the dependence of MET on demographic and environmental parameters are fairly 

compatible between models (Lande 1998). The environmental stochasticity is a major 

factor inducing extinction of relatively large populations. The other three factors govern 

extinction of small or declining populations, which are essentially at the final phase of 
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extinction. Ecological risk of pollutant chemicals may be more appropriately estimated 

for moderately large populations than for endangered small populations because most 

extant populations subject to adverse effects of pollutants in nature are not endangered. 

Therefore, the environmental stochasticity may be the primary factor of extinction when 

we evaluate extinction risk due to pollutant chemicals at very low environmental 

exposure concentrations.  

  As a first-order approximation, MET is roughly proportional to a power of population 

size: T N r Ve∝ −2 1/ , where T  is MET, N the population size (carrying capacity), r the 

intrinsic rate of natural increase, and Ve  the environmental variance of r. Thus MET 

decreases geometrically with the relative magnitude of the mean population growth rate 

to the environmental variance of growth rate, r Ve . These relationships are not exactly 

deduced from the analytical solutions, but approximate well the scaling relationships 

between model parameters and mean extinction time (Lande 1998).  

The adverse effects of pollutant chemicals are assumed to primarily reduce r, and the 

other parameters are supposed to be kept constant. The adverse effects may actually 

reduce the carrying capacity (maximum population size) as well (e.g., Enserink et al. 

1991). Nonetheless, the mean extinction time and the extinction probability are much 

less sensitive to N than to r if the adverse effects of pollutant chemicals reduce r and N 

at the same rate. The decrement of MET in the logarithmic scale due to a small 

reduction of r is calculated as ∆logT=2(∆r/Ve)logN, where∆r is the change in r (a minus 

number as long as r decreases).  

As a dose-response function for r, we employed a power function model since this 

model was one of the best models describing responses in r to exposure by pollutant 

chemicals (Tanaka and Nakanishi 2001; see below). The power function model depicts 
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a monotonically decreasing curve with an arbitrary curvature: ( )[ ]r x r x( ) max= −1 α β , 

where x is exposure concentration, rmax  is the maximum r without exposure by 

chemicals, α and β are parameters (Tanaka and Nakanishi 2000, 2001). Respectively, 

the two parameters, α and β, are associated with the magnitude of toxicity and the 

curvature of responses in r to exposure concentration, x. The parameter α corresponds 

to the concentration at which r reduces to 0. 

 

Extinction probability 

The extinction probability, i.e., the instantaneous rate of extinction, may be a better unit 

of extinction risk assessment than the mean extinction time since the extinction 

probability is likely to linearly measure the hazard to populations. On the contrary, a 

ten-fold reduction of mean extinction time does not necessarily represent a ten-fold 

hazard for persistence of populations, rather a much less hazard. 

  Fortunately, it is relatively easy to transform a reduction of mean extinction time into 

an increase of extinction probability because it is approximately equal to the inverse of 

the mean extinction time if the instantaneous rate of extinction does not change with 

time.  

  If the mean extinction time expected before exposure is T0 and that after exposure is 

T*, the change of MET in the logarithmic scale is ∆logT = logT*-log T0 = log(T*/ T0). 

The change in the extinction probability p due to exposure is ∆p = ∆(1/T) = (1/ T0)( T0/ 

T*-1). Thus, substituting T0/ T*=10-∆logT into ∆p gives  

 ( )∆ ∆p p T= −−
0 10 1log ,                                              (1) 

where p0 is the background extinction probability without exposure (1/ T0). If we 
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employ the power function model for the responses in r, the change in r due to exposure 

by a chemical with concentration x is ( )∆r x r= − α β
max . Thus, MET is specified as  

( ) ( )∆ log logmaxT x r V Ne= − α β 2 .                                         (2) 

Putting equation (2) into equation (1), the increment of extinction probability can be 

estimated if the background extinction probability, p0, is known. It is a difficult task to 

determine the background extinction probability. Nonetheless, if we accept an 

assumption, it can be specified as follow. Here it is assumed that the extinction 

probability becomes unity when r reduces to 0 (the exposure concentration is α) so that 

∆p p= −1 0  if x = α, 

where ( )p r V Ne
0

210= − max log                                            (3) 

The background extinction risk varies with different target species because all of the 

composite parameters, rm, Ve and N, depend on species. In the following risk estimation, 

we employ 10-6 as a background extinction probability. A couple of weak justifications 

are merely presented for employing this value. According to a population ecological 

study on a zooplankton (Daphnia brachyurum), the mean intrinsic rate of natural 

increase and the variance of the intrinsic rate were estimated as r = 0.014 and Ve = 0.031 

(Hanazato and Yasuno 1985). Hence, 2 rm/Ve is approximately unity. The population 

size of 106 for typical wild lives is a likely value. According to fossil records life spans 

of many extinct species were about a million or ten million years (May et al. 1995). 

Thus the extinction rate per year is about 10-6 or 10-7 for typical species.          

 

Population-Level Effects of Pollutant Chemicals on r 

The intrinsic rate of natural increase, r, or the population growth rate is one of the most 
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important ecological parameters since it determines the persistence or the mean 

extinction time of populations as discussed above. The most complete experiments 

designed for estimating r are the life table evaluation and the population growth 

experiments (e.g., Winner et al. 1977; Allan and Daniels 1982; Gentile et al. 1983). 

Tanaka and Nakanishi (2001) have reviewed published data of dose-response 

relationships in terms of r, and examined relevance of some mathematical models to 

describe the responses. Three dose-response models, i.e., the power function model, the 

Weibull model, and the quadratic function model, were analyzed with 63 

concentration-r relationships from 38 publications. The power function model indicated 

the best fit among the three models because the power function model produced a larger 

model selection criterion (Newman 1995) than the quadratic model (p<0.01, 

Wilcoxon-test), and a slightly larger one than the Weibull model (p<0.05, 

Wilcoxon-test).   

  The referenced data sets explored responses of various test organisms by various 

chemicals, and the test conditions may be considerably unequal between experiments. 

And properties of responses, especially the curvature, may be specific to organisms or 

chemicals. Nonetheless, it is convenient for risk estimation if the responses in r depict a 

common shape. Tanaka and Nakanishi (2001) have roughly estimated the general β, 

which approximated the standardized total data set, as 1.84. To find the general β all 

data were standardized with the maximum r and α (both r and α were scaled to unity). 

And the best-fit β was estimated by fitting the power function to the total (standardized) 

data set. Bootstrap resamplings from the standardized total data set produced a variance 

of β, which was compatible with the variance between actual data sets. This strongly 

suggests that the variation of β between data sets (experiments with different test 
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species or chemicals) can be mostly explained by random sampling errors.  

 

Acute-Chronic Extrapolation 

The extinction risk estimation need population-level data in terms of r for all chemicals 

and test organisms. However, only a minor proportion of chemicals and organisms of all 

possible combinations have been examined for the population-level responses. One way 

to supplement the scarcity of data is to utilize the acute-chronic extrapolation (Suter 

1993; Forbes and Calow 1999; Roex et al. 2000). Recently, Roex et al. (2000) have 

rigorously analyzed toxicity data on r and compared those with acute toxicity data. 

They concluded that the acute-chronic ratio based on r was 14.4 on average but 

seriously influenced by species sensitivity rather than mode of action of chemicals.  

Applying the power function model, the concentration-r relationships were 

summarized by two parameters α and β. We employed the general β (1.84), which was 

estimated from the entire data set under the assumption that chemical and species 

specific curvatures of responses in r were negligible. The other parameter α was 

estimated from the acute-chronic extrapolation. Among zooplanktons the regression of 

α to LC50 in the logarithmic scale was estimated as ln( ) . ln( ) .α = +0 843 0 446x (The 

data source was provided by Tanaka and Nakanishi [2001]). We used this regression 

equation to predict α from LC50.  

 

Results 

Tentative extinction risk estimations are exemplified for some agrochemicals and 

surfactants on Daphnia populations (Table 1). Only for a few chemicals among the 

listed ones the life table toxicity was examined (e.g., dodecilbenzene sulfonate [LAS12]: 
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Tanaka and Nakanishi [2001b]). The acute-chronic extrapolation based on the above 

regression equation was applied to all of the chemicals including ones which life table 

toxicities were known so that uncertainties due to extrapolation were equalized between 

chemicals. A relevant analytical method to balance the uncertainties due to 

extrapolation and make the extinction risk to reflect deficiency of data has yet been 

explored.  

The exposure concentrations were assumed to be constant and equal to the maximum 

environmental exposure concentrations that had been ever reported in Japan.  

    

[Table 1 about here]    

 

  The estimated extinction risks (increments of extinction probability) are listed in a 

descending order in Table 1. Evidently, the extinction risk and the ecological hazard 

quotient (EHQ), which is a simple ratio of environmental exposure concentration to 

acute LC50, had the same order. Nonetheless, the two quotients did not descend at the 

same rate. The extinction risk decreased at a much higher rate than the EHQ as the 

ranking order dropped. This implies that the ecological risk indicated by the extinction 

probability is much more concentrated into the most hazardous chemicals than that 

indicated by the EHQ.  

 

Discussion 

The basic framework for extinction risk estimation of pollutant chemicals has been 

presented and exemplified by a tentative application to agrochemicals with Daphnia 

populations as target species. In the context of ecological risk assessment (c.f., Power 
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and Dams 1997), the extinction risk estimation has some advantages that are lacking in 

other methods. First, it holds ecological principles although some simplifications are 

inevitable. The estimation of extinction probability (or time) is based on the ecological 

model that simulates population dynamics and extinction. The population-level effects 

of pollutant chemicals are completely embedded in a model parameter (the intrinsic rate 

of natural increase). Another merit of the extinction probability is that it may entail a 

probabilistic risk assessment since the extinction risk itself is a probabilistic concept. 

This is followed by possibilities that uncertainties of toxicity data and stochastic 

distribution of exposure concentrations will be included in the risk estimation.  

  In addition, one of the most important merits of the extinction risk estimation is the 

potential feasibility to compare ecological risks due to qualitatively different factors. 

Wildlife is endangered by many factors, e.g., destruction of habitats, over-hunting, 

introduction of exotic species, and pollution. Since the extinction risk estimation is the 

outcome of the population vulnerability analysis (PVA), which is the major analytical 

tool in the conservation biology, all of the above-mentioned risk factors can be 

examined with a common framework. This enables comparison of hazards due to 

different factors, e.g., destruction of habitats vs. pollution by chemicals.     

  Meanwhile, the present form of extinction risk analysis has some shortcomings. 

Validation of predictions is essential for improvement of ecological risk assessment. 

However, experimental tests or field observations of predicted extinction risk are hard to 

practice. The scarcity or complete lack of empirical validation of analytical frameworks 

may seriously restrict future elaboration of the extinction risk estimation.  

  Impact on ecosystems should be evaluated on the community level because species 

that compose a community or an ecosystem exhibit heterogeneous sensitivities to 
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chemicals. And indirect effects via interaction between species, e.g., prey-predator 

relationship, may bring about an important part of ecological hazard by chemical 

pollution (Bartell et al. 1992). The extinction risk analysis on a single population does 

not examine such indirect effects. Nonetheless, multi-species extension of the extinction 

risk estimation on a single species may present an analytical tool to estimate hazard to a 

community as a whole. Future work is needed.        
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Table 1. Extinction risk estimation for some agrochemicals and surfactants on Daphnia 
populations. 

 

Chemicals MEECa LC50 ∆pb EHQc 

LAS12
d 3000 5700 4.00×10-4 26.3 

Pyridaphenthion 12 38 7.35×10-7 15.8 

Malathon 4.5 13 5.91×10-7 17.2 

Diazinon 2 7.8 2.58×10-7 12.8 

Nonylphenol 7.1 75 7.59×10-8  4.67 

Fenocarb 12 320 2.09×10-8  1.88 

Fenitrothion 0.2 9.2 2.58×10-9  1.09 

Benthiocarb 7 750 2.04×10-9   0.467 

Mefenaset 8 1840 6.46×10-10   0.217 

Fenthion 0.05 5.5 4.41×10-10   0.455 

Molinate 24 40000 3.86×10-11  0.03 

Simetryn 9 27000 1.18×10-11   0.017 

Pretyrachlor 6 26500 6.33×10-12 0.011 

Butachlor 2 25000 8.38×10-13 0.004 
a  Maximum environmental exposure concentration (µg/L). 
b  Increased extinction probability by exposure. 
c  Ecological hazard quotient (MEEC/LC50). 
d  Linear alkylbenzene sulfonate (dodecilbenzene sulfonate). 

 

 


