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Abstract 

We propose a new method to evaluate the ecological risk in terms of the increase in 

extinction rate of natural popu]ations of anima]s and plants. The potential increase in the 

extinction risk by exposure to toxic chemica]s and habitat loss is calculated for a freshwater 

fish, Japanese crucian carp (Carassius auratus subsp) in Lake Blwa and in Lake Suwa. We 

start with a stochastlc differential equation model (10gistic growth wlth environmental and 

demographic stochasticltes). We estlmated three parameters (growth rate r, carrying capacity 

K, and environmental noise a 2) from a time series data of population size using maximum 

likelihood method. In Lake Biwa, growth rate and environmental noise of crucian carp are 

estimated as r = 0.0173959 and ae =0.0664468, respectively. Toxic exposure causes the 

decrease in survivorship per generation by a, which cannot be larger than r (O < a < r). 

Extinction risk Increases rapidly with a. Habitat reduction (decrease in K) also causes the 

enhancement of extinction probability, but it is not as effective until the fraction of 

remaining habitat area becornes very srnall. In contrast, toxic chemical exposure may cause 

fast reduction in logTK for a srnall concentration, if dose-effect relationship (Tanaka and 

Nakanishi 1988) is nonllnear (p < l). We developed a method to calculate the reduction in 

habitat area that causes the same extinction rlsk as a give level of toxic chemical exposure. 
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1. Introduction 

The extinction risk of natural populations of animals and plants serves a basls for 

quantifying ecological risk (Nakanishi 1995). The importance of various risk factors can be 

evaluated In terms of the enhancement of extinction risk, or the reduction in the mean 

extinction time of natural populations If we combine this with the measurement in 

laboratory experiments of toxicity of che]nicals and the estlmate of their spatial spread and 

accumulation, we can calculate the risk of population extinctlon enhanced by the toxic 

chemical exposure 

In conservation biology, the extlnction risk is measured by constructivrg computer 

simulation models. However many parameters included in realistic simulation models are 

often difficult to estimate Especia]ly the magnitude and correlation of temporal fluctuation 

of parameters are very important in determinlng the extinction risk, and yet are often not 

available for fie]d populations To overcome this difficulty we have developed a new 

method of extinction risk estimate based on model aggregation, as explained in lwasa's 

chapter of this proceeding. We choose a simple case (canonical model) with logistic 

population growth with environmental and demographic stochasticities, and use this as the 

standard for al] the other cases. We derived the mean extinction time as a function of three 

parameters (intrinsic growth rate ,', carrying capacity K, and environmental stochasticity 

(T~) For a given population, we can estimate these from a time series data, and then 

calculate the mean extinction time. 

The same method can bc used to simplify a complex model with many variable into 

a simple model with only three parameters. We generate a time series data from the complex 

model, obtain three parameters of the canonical model by fittlng (maximurn likelihood 

estlmate). Then we can estimate the mean extinction time from the formula. We examined 

this aggregation method for a population includlng two subpopulations connected by 

migration (see lwasa's chapter). 

In addition, this method provldes a common currency in diverse risk factors, such as 

habitat size reduction, habitat fragmentation, toxic chemical release, recurrent spread of 

epidemics, invasion of competitors, genetic deterioration. In terms of the shortening of 

"population longevity", we can compare for example the reduction of habitat size and the 

impact of toxic chemicals. We can ask what Is the magnltude of habitat area reductlon that 

causes the same magnitude of threat to a population as a given level of toxic chemical 

exposure. 

In thls paper, we combine the formula of the mean extinction tlme with the impact 

of toxic chemicals causing reduction in the intrinsic growth rate obtained from laboratory 

measurements. Then we compare the habitat area reductlon with the exposure to toxic 

chemicals in the field In terms of their enhancement of population extinction risk. As an 

illustrating example we wi]1 use a freshwater fish. Japanese crucian carp In Lake Biwa, from 

whlch a relatively long time series of fishery data is available, allowing an estimate of the 

magnitude of environmenta] fluctuation. 
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Fig. I Change of fisheries of crucian carp in Lake Biwa, number of 

fisherboat in Siga prefecture, and CPUE (fisheries of crucian carp / 

fisherboat). 

3,2 Risk of toxic chemicals 

When a population is exposed to toxic chemical substances in the environment, the 

effect causes a constant decrease in the survival rate per generation, denoted by a. Change 

in the population size per generation is 

rx(1 - + a,'~,(t) ' x + ~,,(t) e ~~ - C(x dx x 
dt K 

Fx[] k x - + a,~,, (t) ' x + ~,/ (t) e lr~, 

(2) 

where r = r- a, k = K - K~ . Therefore, the decrease in the survival rate per generation 

r
 

caused by exposure to toxic chemicals leads to the decline in both r and K of the canonical 

model (Eq 1) The mean extinction time becomes 

, - (2)' TA r-aK aK a 
r
 

(3) 
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where TK is the formula obtained for the canonical model (Eq. (2) in lwasa's chapter). 

Clearly, the decrease in the survlvorship per generation a, cannot be larger than the 

intrinsic growth rate r, and the mean extinctlon time is zero when r = a. This means that a 

species with a sma]1 growth rate r is easier to go extinct than a species with large r by the 

exposure to toxic chemical substances that decrease the survivorship if their sensitivity a is 

the same. 

Figure 2 shows the relationship between the decrease in the survival rate per 

generation a and mean extinction time TK. Mean extlnction time decreases quickly as oe 

increases from zero to r and the way logTK decrease with a is close to linear. The decrease 

in mean extinctlon time Is larger for a large population (K = 106) than a small population 

(K = 102) This means that toxic chemicals are very effective in threatening large 

populatlons that is otherwise qulte stable. 
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Fig. 2 Relationship between decrease in survivorshlp per 

generation and mean extinction time. 

Tanaka and Nakanishi (1998) reviewed results of laboratory measurements 

relationship between r and toxic chemlcal concentration, and summarized them 

following equation 

[ [~ J p
 1 ') 

,(<)=, -
~,* 

'
 

on the 

as the 

(4) 

where z is the concentration of toxlc chemicals, r**. is the maximum growth rate, and 

constant for nonlinearity. The reductlon in survival rate per generation a is 

p' Is a 
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where g is the generation time By combining Eqs. (3) and (5), we can estimate the Impact 

of toxic chemicals to the decrease in the mean extinction time. 

The relationship of the decrease in the logarithm of mean extinction time and the 

reduction in the survivorship a is close to linear (Fig. 2) However the survivorship a 

decrease with the dose z depends on critically the nonlinearly; i.e. P in Eq. (5) may not be 

l . Tanaka and Nakanishi (1998) showed that p varies greatly between toxlc chemicals and 

between organisms. For the cases of small p (p < l), small dose can cause a sharp decline in 

survivorship but further inerease in dose does not cause much additional effect. In contrast 

the cases wlth a large p (fi > l), toxicity starts above a certain threshold level. The relation 

between the enhancement of extinction risk and the amount of chemicals hence depends 

strongly on p. 

3.3 Habitat size reduction causing equivalent size as toxic chemicals 

On the other hand, reduction of habltat size, or the decrease in carrying capacity K. 

also causes the increase of population extinction risk. Flgure 3 shows the relationship 

between habitat loss and mean extinction time Tk. Mean extinction time decreases with 

habltat loss, but initially gradually and then rapidly decrease to zero between 90 and 100 9~o. 

This pattern is quite different from the pattem of risk of toxic chemicals in Fig 2. 
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Fig. 3 The relationship between habitat loss and mean extinction time. 

Both toxic chemical exposure and habitat loss promote population extinction We 

can compare the magnitude of their impacts on extinction risk. If habitat size reduction and 

toxic chemical exposure cause the same extinction risk, we have 
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~ ' 'i2)=TK(r-aK aKa ' ~T ' e2), TK(r'KIO AtogK a (6) 

where AlogK is the magnitude of habitat size reduction expressed in term of the decrease 

in the logarithm of K. Because there is a nice 

(see Eq (3) in lwasa's chapter), small change in 

A Iog T ~1 A Iog K 1 ~ a2 ~ ~~AlogK 

inear relationship between logTk and logK 

ogTk caused by the increase in logK is 

(7) 

where CV ~ ( ~r Is close to CV2 from Eq. (4) of lwasa's chapter). Then, if a is 

small (small Impact), we can derive the relationship between AlogK and oe from Eq. (6), 

r
[
 

AlogK=~i l+ a,, 
2
 

2
 

,
)
 

a
 ~T Iog Tk (8) 

In the case of Crucian carp in Lake Biwa, Eq 

A Iog K = a 
O. Ol 73959 

(8) is calculated as 

( Iog K - O. 93627) . (9) 

There linear relationship between oe and 

corresponds to a relatively large AlogK 

AlogK, demonstrates that a small increase in a 

(Fig. 4). This means that a small dec]ine in the 
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Fig, 4 Relationship between the decrease of survivorship per 

generation and the reduction of carrying capacity AlogK. 
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