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Not all ecologists sense that a risk-based approach is required. Many have suggested 

using changes in the asymptotic growth rate as a measure of the impact (e.g., Pesch et al. 1987; 

Caswell 1995; Munns et al. 1997; cf. Walthall and Stark 1997). Ferson et al. (1996) criticized 

this measure for its insensitivity to initial conditions and its inability to model environmental 

stochasticity, density dependence and other critical aspects of demography. Since the seminal 

paper by Ginzburg et al. (1982), many authors have come to agree that an ecological risk 

assessment should be a probabilistic forecast of population-level effects. There were two 

themes present in that paper that have become consensus views. The first is that, apart from 

humans and endangered species which enjoy special protections, effective ecological 

management is based on assessments above the level of the individual organism. The second is 

that a probabilistic analysis that incorporates variability and recognizes uncertainty is crucial 

for an ecological engineering that can provide practical answers to the questions about the 

magnitude and severity of impacts of chemicals. The emergence of this risk language has been 

an important development in applied ecology over the last two decades because it allows 
impacts to be plac~d in the context of natural variability. 

2. Distribution of cumulative risk 

In this language of risk, we characterize not the future abundance of a population, but a 

distribution from which the future abundance is expected to be drawn (Fig. 1). The probability 

that the population reaches a certain size or lower within some time horizon is called the risk of 

(quasi-)extinction (Ginzburg et al. 1982). The amount of times it takes a population to reach 

some threshold size is characterized by a distribution called the time to (quasi-) extinction. 

Our risk analysis admits that we do not know future vital rates that govern population growth, 

but it presumes that we can statistically characterize the distributions of these rates. We 

estimate these distributions from observations of the past values of the relevant vital rates. 

This approach usually assumes that the distributions are stationary, but this is much more 

reasonable than the assumptions of a deterministic analysis. 
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In pracbce, the curve in Fig. 2 can be estimated with a variety of different kinds of 

analyses, ranging from screening assessments with minimal data requirements (Ginzburg 1982; 

lwasa 1998; Tanaka 1998; Matsuda i998) to comprehensive assessments based on extensive 

empirical information. Examples of the latter include assessments with detailed internal 

structure of age or stage classes within a population (e.g., Lande and Orzack 1988; Ferson et al. 

1989; Bridges et al. 1996; Moore et al. 1997), spatial structure of metapopulations (e.g., 

Akgakaya and Atwood 1997), and trophic structure including bioaccumulation (e.g., Spencer et 

al. 1997; 1999). A fully probabilistic assessment at the population level can be conducted with 

any level of detail and complexity considered appropriate by the assessor. 

3. Assessing the consequences of impacts as delta risk 

Ecological management decisions should be based on the assessment of cumulative 

attributable risk. For environmental regulation to be fair, it should focus on the change in risk 

due to a particular impact. The risks suffered by a natural population can be substantial, 

whether or not it is impacted by anthropogenic activity. Only the potential change in risk, not 

the risk itself, should be attributed to the impact. On the other hand, for environmental 

protection to be effective, regulation must be expressed in terms of cumulative risks suffered 

by a population from impacts and from all the various agents involved, cumulated through 

time. An impact assessment typically requires an analyst to conduct parallel risk analyses, one 

modeling the background conditions, and the other modeling the impact conditions. The 

background case should not represent pristine conditions. It should be a reference against 

which make a comparison. The vital rates used as parameters in the in the background case are 

generally derived from empirical information, but may also be established by regulatory fiat. 

The vital rates used in the impact case are the same as those of the background case except 

where evidence or suspicion dictates to the contrary. For instance, in assessing chemicals 

known to disrupt reproductive function, fecundity rates or maturation time might be reduced. 

Sometimes the estimation of the vital rates for the impact case involve comprehensive toxicity 

studies and elaborate exposure models, but sometimes they are simply worst-case estimates. 

For a new chemical introduction, the vital rates to be used for the impact case can be estimated 

from knowledge of the effects of structurally related chemicals. At Applied Biomathematics, 

we have used population-level risk assessments to assess the effects of chemical 

contamination, harvest, thermal effects, entrainment and impingement, habitat loss, and 

disruption of migration and dispersal patterns. Moreover, all manner of impacts can be 

integrated within a single analysis so that intcracting or cumulative 

Fig. 3 depicts a hypothetical assessment that estimates the cumulative attributable risk to a 

population. The lower, dotted line represents the background risk of going extinct (or reaching 

some critical threshold) before a given time. This risk is expressed as a curve over all possible 

time intervals. The natural variability experienced by the population determines the position 

and character of this curve. Increasing the level of environmental stochasticity causes the 

curve to be higher and further to the right. Its location represents the background risk that the 

population experiences even without the anthropogenic impact. A11 natural systems exhibit 
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variability whether or not there are anthropogenic impacts. This background level of risk 

provides a scale against which risks under impacts should be compared. 

The upper, solid curve in Fig. 3 represents the risk of extinction when there is an impact. 

The difference between the two curves is that part of the risk that can be attributed to the 

presence of the impact. The degree to which the solid curve is above or to the left of dotted 

curve is an assessment of the population-1evel effect of the impact. The difference between the 

two curves might be quantified by the maximal vertical distance between them, or perhaps by 

the area between the curves. However it is measured, it is the difference between the two 

curves that is the attributable risk. Only this attributable risk can be fairly blamed on the agent 

of the impact, and removing the impact completely can only relieve the attributable risk. This 

way of displaying the results of an assessment emphasizes the irremovability of background 

risks. 
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Fig. 3. 

There is another way to assess the effect of an impact on the population that is somewhat 

more direct in that it asks how big a difference suffering an impact would make for a particular 

population. Fig. 4 shows such a result. The abscissa is the change in the time at which a 

population goes extinct or first crosses its threshold. The ordinate is again probability, and 

tells how likely it is that a decrease in the time of a given size will occur. Thus, Fig. 4 is the 

risk of a decrease in time to quasi-extinction attributable to the impact. It is again a probability 

distribution, displayed now as a complemented cumulative distribution function. It can be 

thought of as the risk of early extinction due to the impact. Any nonzero values are attributable 

to the impact, and positive values are adverse as they represent how much sooner a population 

could go extinct or decline to its threshold. More serious impacts are characterized by curves 

that are higher or further to the right. 

This assessment can easily be implemented in a Monte Carlo simulation in which two 

copies of each population trajectory are maintained. The first population does not experience 

the impact, but is subject to the normal buffeting of environmental variability. The second 
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population is exactly identical to the first in every way except that it experiences the impact 

and its vital rates are discounted accordingly. The pairing of dual populations in the Monte 

Carlo simulation is crucial so that the same random deviates are used for both the impacted and 

unimpacted populations. Otherwise, it is impossible to compute the difference because the 

essential correlation information will be lost. This means, for instance, that the information in 

Fig. 3 is insufficient to estimate Fig. 4. These two summaries communicate different aspects 

of the assessment. Fig. 3 shows the difference of risks, whereas Fig. 4 shows the risk of 

differences. 
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Fig. 4. 

4. Uncertainty propagation is needed when data are scarce 

One important advantage of summarizing the assessment in terms of the risk of early 

extinction is that it is easy to display the uncertainty about the estimate. Fig. 5 depicts 

intervals bounds around the distribution shown in Fig. 4. This depiction conveys the 

incertitude (i,e., partial lack of knowledge) aboui the result that arises from measurement error 

in the input parameters. 
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Fig. 5. 

A properly constructed risk assessment distinguishes between incertitude and variability 

(Ferson and Ginzburg 1996), Of course, the conclusions possible in the face of great 

incertitude are weaker than they might have been if there were there no measurement error or 

gaps in scientific understanding. For instance, as measurement error becomes larger, the gray 

region in Fig. 5 would grow wider and we would have less surety about what the risks actually 

are. But making a useful decision does not require perfect precision, A reliable picture may 

emerge from an assessment even though empirical information is very limited, In this context, 

the artful use of conservative assumptions can be very important. For example, Ginzburg et al. 

(1990) explain how a conservative assumption can replace ignorance about the nature of 

density dependence in a species and allow a risk assessment to obtain reliable results that may 

turn out to be good enough for management or regulatory decisions. Assessments that employ 

probabilistic risk analysis to take account of the ubiquitous variability of ecological processe~ 

in nature, should also use uncertainty propagation techniques to be honest about our 

uncertainty arising from measurement error and ineomplete scientific understanding, 
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