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Abstract o

We have studied a method to evaluate the ecological risk in terms of the decrease of
mean extinction time T (or logT) of populations. The method bases on a stochastic
differential “equation” model that 'wé call canonical model (logistic’ growth with
environmental and demographlc stochast1c1tes) and maximum likelihood estimate of the
parameters (growth fate r, carrying capacity K, and environmerital noise 0'32) from a tifme
series data of population size. In this paper, we develop a method to evaluate ‘the
approximate confidence interval of the estimated parameters using bootstrap computer
simulation. In cases of -short data, the parameters (especially. r) tend to be missestimated
because the maximum likelihood estimates are not unbiased estimates. Therefore, we
develop a new sxmple method based on bootstrap to 1mprove these biased estimates and to
obtain better estlmates This adjusted method reduces bias in estimates ermnently We also
study the effect of model 51mp11flcat10n (aggregatlon) of three harvest models (constant,
proportional and threshold harvest) to canonical model. Proportional harvest model shows
complete aggregation. logT of constant harvest model significantly correlated with logT
estimated using by canonical model. However, mean extinction time of threshold harvest
model is difficult to estimate by canonical model.
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1. Introduction

The mean extinction time of natural populations provides a risk criterion for
ecological risk assessment (Nakanishi 1995; Iwasa 1998; Hakoyama and Iwasa 1998). We
studied a method to estimate mean extinction time from time series data of population size
based on a stochastic model (canonical model; Twasa 1998).

The estimate method was based on a maximum likelihood estimator with some
approximations, then the estimate is not always correct, especially in short time-series data.
Time-series data of natural populations are usually shorter than 50 generations, therefore
the estimate bias in short data set was a problem of the method. As the other problem,
because we do not know the distribution of the estimate of mean extinction time, we could
only calculate a point estimation but could not calculate confidence intervals of the
estimate.

In this paper, we attempt to solve these problems. We develop a new method to
obtain a better estimate than the simple maximum likelihood method, based on bootstrap
computer simulation. Bootstrapping method also provides approximate confidence intervals
of estimates. We also examine the robustness of the canonical model to three harvest models
(complex structured models), and examine the error in estimates when the canonical model
is applied to the structured populations.

2. Canonical Model

This section is a brief review of our previous study on a stochastic single population
model! (canonical model; see Iwasa 1998 and Hakoyama and Iwasa 1998). The dynamics of
population size X at time f is expressed in terms of stochastic differential equation
{canonical model):

% = rX(l — %) +0& (oX +£,(t)e VX, (r, K, and o, >0), ()

where r is a growth rate, and K is a carrying capacity, &,(¢) is the white noise, and o, is the

intensity of the environmental fluctuation. The mean extinction time Tk, for a population
following Eq. (1) is:

5 K= | RIK+D)+1
Te(rnK.0)===[] e‘“"""[M) ———dyds, @)
o' 4% x+D (y+ D}y
r 1
where R=—— and D= e
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To apply the model to natural populations, we need three parameters (r, K, and ©,). These

can be estimated from a time-series data of population size using by a maximum likelihood
method. Suppose that we sample population size X(#) at n+1 points with regular intervals

{X(to) = xg, X(to + T) = %, X(t, +27) = x5, .00, X(ty +17) = x,,} . If the demographic
stochasticity is neglected (if population size moderately large), carrying capacity K is equal
to the average population size:

K=E[X(n)]. (3

A demographic stochasticity causes a small bias: K > E[ X(¢)]. Assuming small fluctuations
around the population average (0,2 << r), the likelihood function L is:

2 1 fi~1 2

InL= —%ln(zna) - %In(Zna(l - ﬁz)) Toa mij £ (xm - ﬁxi) (4)

in which o = ZL(O'EK2 + K), B=eT.
r

3. Confidence Intervals

3.1 Bootstrap Confidence Intervals

Approximate confidence intervals of parameters of canonical model, Eq. (1) can be
found by bootstrapping computer simulation (see Dennis and Taper 1994). First, we
calculate maximum likelihood estimates of parameters (7, K and 6“_,) from time series data
of population size, maximizing InL, Eq. (4). Second, using the parameters estimated and a
computer simulation model that parallels to canonical model, we generate repeatedly (for
example, n = 5000) time series of the same length as the original data. We start each
simulation from K and use the population size at the 30th generation time (as moderately
long time) for the initial population size of computer-generate data. For each computer-
generate data, we calculate maximum likelihood estimates of parameters, denoted 7K
and 6':. Third, we take the 2.5th and the 97.5th sample percentiles of the 5000 #* values
for 95% confidence intervals of », K, and &, .

Figure 1 shows the distribution of #, K", 6‘8* and log 7" . Here we do not use real
data to estimate 7, K and &,, but we-set these parameters arbitrarily. Clearly, the estimate

of 7 is under large bias, and # tend to be overestimated (E[?*] is larger than 7). On the

other hand, the estimate bias of K" and &,” is relatively small (E[I% *] and E[é’;] are close
to K and &G, , respectively). E[log f‘*] is also larger than logf", and this bias of

log T(F,I% , &e) attributes to the estimate bias of 7 mostly. Clearly, in the case of short data,

the maximum likelihood estimate based on Eq. 3 and Eq. 4 is quite misleading.
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Fig. 1 The distribution of (a) 7', (b) K™, (c) &, and (d) log 7" . We set #
=0.1, I% = 300 and 5} = 0.1. #ime series = S0. Reomputer-generate = 5000,

We calculate log 7 using by an approximate regression formula
(Eq. Al, Appendix).

3.2 Data length and confidence intervals

As shown in Fig. 2, the bootstrap confidence intervals of parameters become small
with long data. Because of the nature that a maximum likelihood estimate approaches to an
unbiased estimate with long data, the bootstrap average of » and G, approaches to the true
value (Fig. 2a, ¢).

When bootstrap averages deviate from true values, the confidence intervals are also
not correct (for example, in » with data length = 10; Fig. 2). Because the bootstrap average
of r and o, is overestimate (Fig. 2a, c), the true confidence intervals must be smaller than

the bootstrap confidence intervals.
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Fig. 2 The relationship between the number of data length (nime series)» and
the bootstrap average (X) and 95% confidence intervals (bars) of (a) 7, (b)
K',(c) 0," and (d) logT". Weset r =0.1, K =300 and &, = 0.1. Dot
lines indicate the true values. neomputer-generaie = S000. We calculate log T
using by an approximate regression formula (Appendix). Black circles (o)
represent the adjusted expectation of parameters calcnlated from the
bootstrap averages { X). See text for detail.

3.3 Adjusted estimation based on bootstrapping

As shown in 3.1 and 3.2 sections, the maximum likelihood estimate of three
parameters is clearly misleading in short time series data. Since available time series data of
natural population sizes must be short, we need a better estimate method to improve the
maximum likelihood estimate.

Here we develop a simple method based on bootstrap computer simulation. First, we
suppose that there exists monotone-increasing transformations between a maximum
likelihood estimate and a bootstrap average (see Efron 1987):

?=&wwg£:&@mmmm@=&Jﬂ@w, (5)

—121 —



where g,, gy and g, are some monotone transformations. In this case, the unbiased

estimation of parameters is:
r=g,(7), K =g¢(R)and 0, =g, (8,). (6)

If E[F*] is larger than F, the unbiased estimation of » is smaller than 7, and if E[F*] is
smaller than 7, the unbiased estimation of r is larger than f. Parameters K and O, also have
similar nature. Therefore, the approximate bias-corrected estimation of parameters (7;, K,

and G,;) can be obtained by repeat calculations of the bootstrap average of three

parameters:
s _ Afi K. = IA{I,\I%E—I d 6, = ——-—*-—6."'16-"""[ , (i=2,3,4..), 7
7, E[}f;"_l*] i = E[ i-l*] an e E[&'e l_l*] L (7)

where 7 =F, I%l =K and 6‘9,1 = §,. We do not need to know the monotone
transformations, g, but the repeat calculations provide the better estimation automatically.
For each computer-generated 7, K" and 6‘;, we can also calculate the approximate bias-

corrected estimation, then we can obtain better bootstrap confidence intervals. In Fig. 2, we
show the approximate bias-corrected estimations for the bootstrap average of three

parameters; E[?*], E[IE' *] and E[&e*]. The estimations {black circles, ) are close to true

values (Fig. 2). The number of repeat calculation i is 19. Table 1 shows an example of a
convergence from 7, K, and g,, (= E[?*], E[I%*] and E[é‘e*], respectively) to 7, Ky
and 6}.19-

Note that not only the estimation of # and @,, but also that of X is improved by

the bias-correct method (Table 1). The estimation of K have systematic bias
(underestimate) because of the approximation in maximum likelihood functions (Eq. 3 and
4). Namely, we may improve the systematic biases from approximations in maximum
likelihood functions, and exclude the constraints of the assumptions.
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Table 1. A convergence from 7, K, and &,, to 7y, K;; and &, 5.
Reomputer-generate 18 2000, but the time series with Zx IRETRS 0 or went extinct are

not used for calculations. » = 0.1, K =300 and &, = 0.1. ntime series = 10.

i 2 Iﬁ{.‘ &e.z' Fi*] E[I%;*] E[c}e.i*] n

1 739846 296.173 112679 1.305251 295423 117219 1481
2 419361 296.925 108314 1.027982 294.817 .116671 1664
3 301817 298.291 .104607 .952832 296.505 .116346 1726
4 234352 297.957 101309 .889183 295367 .11148F% 1749
5 194993 208.770 102398 .805724 299.214 .114864 1776
6 179050 295.733 100450 .835005 293.990 .112219 1763
7 158645 297.928 .100861 .824804 296.422 .113491 1752
8 142304 297.678 .100140 .780895 294918 .112408 1758
9 134823 298.945 100381 .773165 297.003 .110975 1750
10 129013 298.109 .101922 .777683 296.152 .113411 1773
11 122736 298.130 .101264 781341 296952 .113916 1775
12 116218 297.348 .100164 741014 292382 111519 1777
13 116035 301.203 101205 .748730 295,564 .113768 1810
14 114658 301.823 .100236 .779885 297.591 .113748 1763
15 108771 300.385 .099294 744181 299.008 .111352 1783
16 108138 297.537 .100477 .782080 294.154 .114339 1784
17 102298 299.579 099018 .746287 296,023 .111815 1805
18 101415 299.731 .099783 .731621 297.676 .112360 1762
19 102555 298,217 100066 729842 297.649 .112248 1808

4, Model Aggregation

4.1 Harvest models

We can use the estimate method from time series data of population size to
aggregate a complex model to the canonical model. As complex models, we examine three
harvest models:

% - rx@—%}r O,E,(1) o x+ (1) o — y() ()

where y(x) = a(constant harvest model), —bx (proportional harvest model) and
{O forx<c

(threshold harvest model) (see Lande et al. 1993).
so for x>c
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First, we generate a sample path of population size using a simulation model that is
parallel to each harvest model (ntime series = 1000). Second, we estimated three parameters,
7, K and 6‘e by fitting to the sampled population fluctuations to the canonical model, and
calculated the mean extinction time logZy using Eq. (2). Finally, we compared it with true
logT}, of harvest models obtained from Eq. 9, 10 and 11.

4.2 Constant harvest model
The mean extinction time of constant harvest model is:

5 Koo RO +D R(K+D)+2a+] x 2e 1
=2 [femo )(__y ) L R ©)
o0 x+D y) (y+D)y

e

The estimate method based on the canonical model overestimates the true logTy, of constant
harvest model (Fig. 3), but there is a significant positive correlation between the estimate
based on the canonical model and the true logTy (r2 = 0.915, n = 11, p < 0.0001).
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Fig. 3 Model aggregation of constant harvest model. (a) The relationship

between harvest rate a and log7. (b) The relationship between harvest rate a

and three parameters estimated. Black circles show the true value of logT

calculated by Eq (9). X and bars are bootstrap average * SE (n = 30)
(logT estimated). Aiume series = IOQO. r=01K-= 300 and o, =01,

4.3 Proportional harvest model

Proportional harvest model is similar to a model when a population is exposed to
toxic chemical substances in the environment, the effect causes a constant decrease in the
survival rate per generation {Hakoyama and Iwasa 1998). Because the mean extinction time
of proportional harvest model is:
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Tk(r—b,K—b—K,O'f), (10)
r

where Tk is the formula obtained for the canonical model (Eq. 2). Therefore, model
aggregation 1s perfect (Fig. 4).
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Fig. 4 Model aggregation of proportional harvest model. (a) The
relationship between harvest rate b and log7. (b} The relationship between
harvest rate b and three parameters estimated. Black circles show the true

value of log7. X and bars are bootstrap average * SE (n = 30)
(IOgT estimated)- ntime series — 1000. r= 0.1 K = 300 aﬂd O-E = 0.1.

4.4 Threshold harvest model
The mean extinction time of threshold harvest model is:

T, = 2 Tj'e—R(3'-xJ(MJR(K+D)+l_.]‘___.dydx,. (11).
ook x+D (y+ D}y

The estimate method based on the canonical model quite overestimates the true logTy of
threshold harvest model (Fig. 3}, and there is no sign'ificarit positive correlation between the
estimate based on the canonical model and the true logT. The estimated value of logTy
have local maximum around ¢ = 200 (Fig. 5a). Note that the estimated value of r have local
maximum around ¢ = 150 (K / 2) (Fig. 5b).
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Fig. 5 Model agpregation of threshold harvest model. (a) The relationship
- between threshold ¢ and logT. (b) The relationship between threshold ¢
and three parameters estimated. Black circles show the true value of logT

calculated by Eq (11). X and bar are bootstrap average = SE (n = 30)
(logT estimated). ntime series = 1000. » = 0.1 K = 300 and &, = 0.1.

5. Appendix

5.1 Regression formula

It takes a long time to calculate logT using by the integral formula (Eq. 2), Then, we
made a regression formula to calculate approximate log7. We calculate some log7 for some
parameter sets (combination of following parameters; r =0.1, K = {1, 1.25, 1.5, 1.75, 2,
2.25,2.5,2.75, 3), ¢,* = {.00001, .0001, .0005} and {.001, .002, ..., .098, .099, .1}), and

using a non-linear regression method and a parameter scaling rule, derived an empirical

equation;
11'1 Tre ression == IH[L)
L 0.1

2 0.318121 (—9.704’?1 _0.I_0',2_ e +8.0?769]

+[1.12073(0'1"f ] -0.0267559J1n(€51) [ ' ) . (A1)
r .
2 0.113793

+[—1.93776[0'lcf ) +2.56977J

s

This formula is a good approximation of Eq. 2, when parameters range in the above
parameter sets that was used Eq. Al or the corresponding scaled parameter range (see
Hakoyama and Iwasa 1999 for detail).
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