# 自動車由来のベンゼンに対する 曝露アセスメント

梶原秀夫1.伏見暁洋2.增田厚2.石塚悟3

1 科学技術振興事業団 2 横浜国立大学環境科学研究センター 3 石川島検査計測

# ベンゼンに関する知見

#### ベンゼンの毒性

・人に対する発ガン性物質であることが知られている(白血病の原因物質)。

#### 日本における大気環境中ベンゼンへの取り組み

- ・1996年5月、大気汚染防止法の改正に伴い、優先取組物質として指定
- ·1997年2月、環境基準濃度を年平均値3μg m<sup>-3</sup> (= 0.94 ppb)に制定
- ·1999年末を目処に、ガソリン中のベンゼン含有量の規制値を現行の5%から1%に削減(中央環境審議会答申)

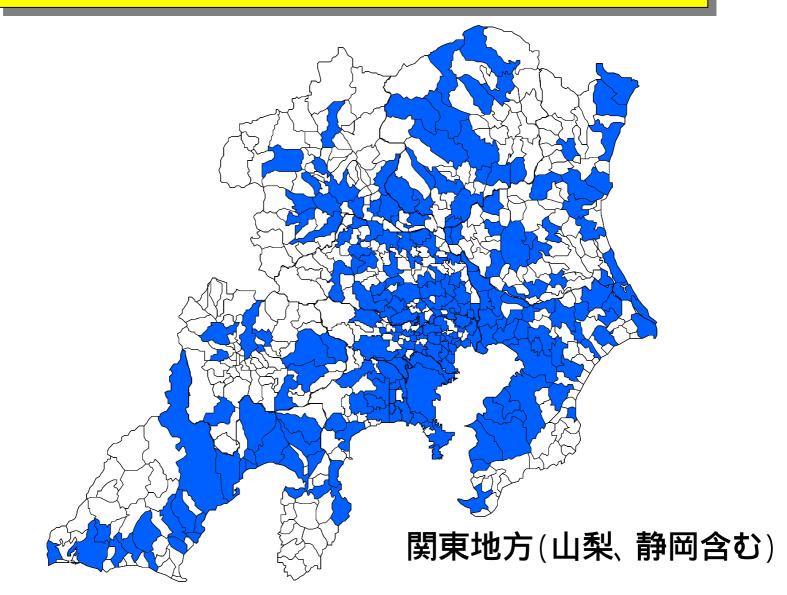
#### ベンゼンの排出源

・主排出源は自動車からの排出ガス

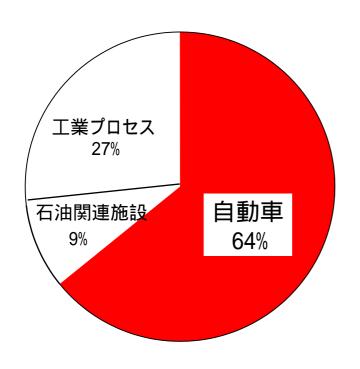
#### 大気中ベンゼン濃度の測定

·平成9年度に自治体による測定開始 月に1回実施

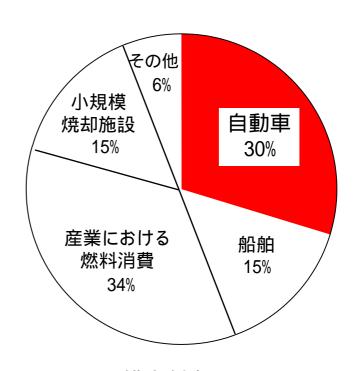
測定地点数の問題、日変動の問題コスト(装置、人件費)




ベンゼンの測定データだけで全国におけるベンゼン濃度の分布を把握するのは困難


# ベンゼン濃度の観測が行われた市町村 (平成9年度有害大気汚染物質モニタリング調査)

(測定は月1回) 関東地方(山梨、静岡含む)


# NOxの連続監視(1時間値)が行われている市町村 (平成8年度現在)



# 日本におけるベンゼン・NOxの排出割合



(a) ベンゼン排出割合 (データは通産省(1995)、石油連盟(1994)による)



(b) NOx排出割合(データは環境庁(1994)による)

# NOx濃度からベンゼン濃度を予測する

#### 測定データの蓄積

·NOxは全国規模で常時測定が行われている。

一般環境大気測定局(一般局)1461箇所自動車排気ガス測定局(自排局)382箇所

全国での濃度分布の 把握が可能である。

#### ベンゼン濃度とNOx濃度との相関

・居住地域での大気環境においては、 ベンゼン、NOx共に、大部分が自動車 排ガスが影響を与えている。 ベンゼン濃度とNOx濃度の間に 高い相関があることが予想される。

# 目的

全国の測定局におけるNOx濃度データよる、全国におけるベンゼン濃度の予測

日本全体でのベンゼン曝露による集団リスクの算出

ガソリン中のベンゼン含有率に対する規制について のリスク便益分析

# 本研究の構成

# NOx全国監視局データ

(一般局)1461箇所 (自排局)382箇所



平成8年度

#### NOx曝露解析

NOx曝露濃度に対する 人口分布

#### 大気連続測定

ベンゼン、NOx濃度の実測



#### 濃度相関の解析

NOx濃度とベンゼン濃度 の回帰分析



# ベンゼン曝露予測



ベンゼン曝露濃度に対する人口分布

# リスク評価



#### リスク便益分析

ベンゼンによる発ガンリスクの人口分布 年間発ガン数の見積り ガソリンに対する規制についての 考察

# NOx曝露濃度に対する人口分布把握のための方法

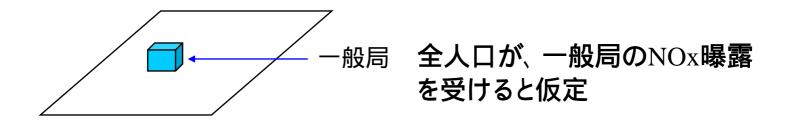
# 測定局の設置状況による市町村の分

| 分類    |       | 自排局 - | 3 一般局 沿道人口 一般環境人口 |       | 計       |         |
|-------|-------|-------|-------------------|-------|---------|---------|
| カテゴリー | (都市部) |       | , <b>×</b>        | 650万人 | 5800万人  | 6500万人  |
| カテゴリー | (郊外)  | ×     |                   | -     | 3000万人  | 3000万人  |
| カテゴリー | (過疎部) | ×     | ×                 | -     | 3100万人  | 3100万人  |
| 計     |       |       |                   | 650万人 | 11900万人 | 12600万人 |

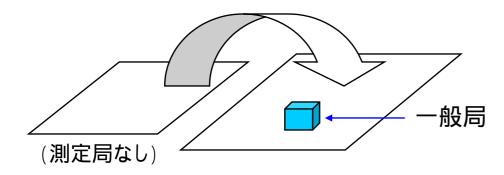
# 都市部



沿道・・・幹線道路端から 30mの範囲。人口の10% が沿道に住み、自排局の NOx曝露を受けると仮定。 (東京都の統計に基づく)


一般環境・・・人口の90% が一般局のNOx曝露を 受けると仮定

例


#### < 渋谷区 > 人口18万3千人

|             | NOx濃度  | 曝露人口   |
|-------------|--------|--------|
| 幹線道路沿い(自排局) | 129ppb | 1万8千人  |
| 後背地(一般局)    | 61ppb  | 16万5千人 |

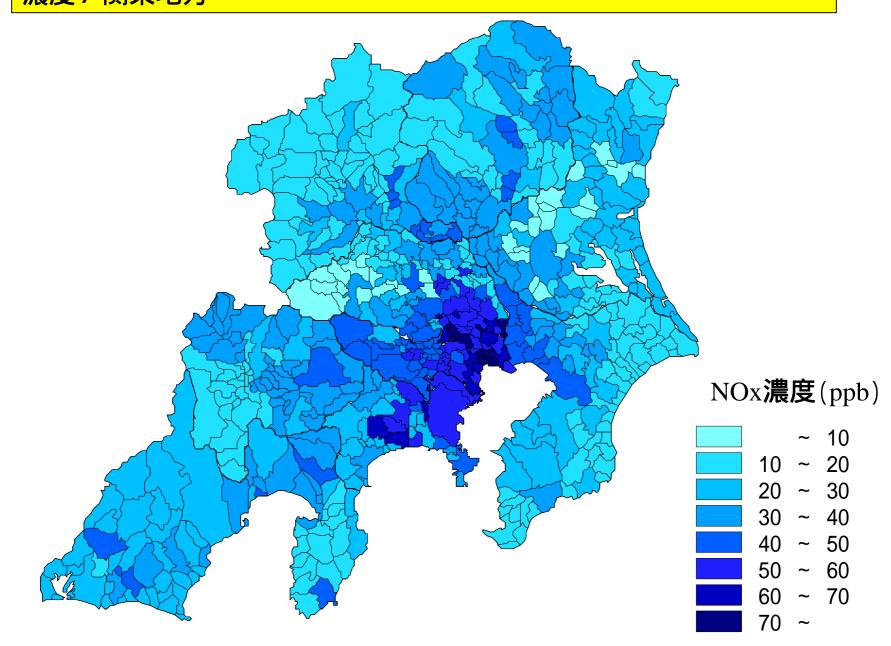
# 郊外



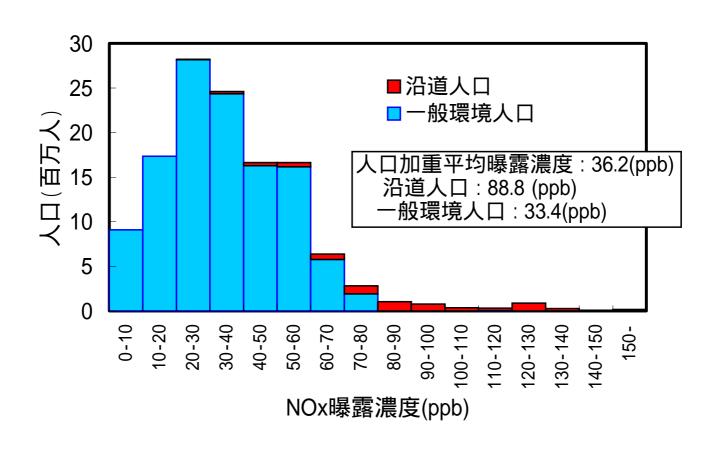
# 過疎部



全人口が隣接する市町村 における一般局NOx曝露 を受けると仮定


# 各カテゴリーごとのNOx濃度

# 濃度


| 分類          | 自排局 - | 般局         | 沿道濃度(ppb) | 一般環境濃度(ppb) |
|-------------|-------|------------|-----------|-------------|
| カテゴリー (都市部) |       | , <b>×</b> | 88.8      | 41.3        |
| カテゴリー (郊外)  | ×     |            | -         | 30.8        |
| カテゴリー (過疎部) | ×     | ×          | -         | 21.1        |
| 計           |       |            | 88.8      | 33.4        |

都市部の沿道濃度は過疎部の一般環境濃度の4倍強

平成8年度の大気中のNOx濃度の観測値(ppb)から推定された全体の 濃度/関東地方



# NOx曝露濃度に対する人口分布ヒストグラム



沿道の人口は高濃度側に集中

# 本研究の構成

# NOx全国監視局データ

(一般局)1446箇所 (自排局)382箇所



# NOx曝露解析

NOx曝露濃度に対する 人口分布



#### 大気連続測定

ベンゼン、NOx濃度の実測



#### 濃度相関の解析

NOx濃度とベンゼン濃度 の回帰分析

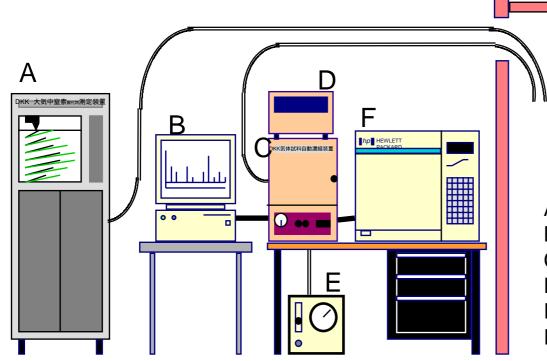


# ベンゼン曝露予測



ベンゼン曝露濃度に対する人口分布

# リスク評価




#### リスク便益分析

ベンゼンによる発ガンリスクの人口分布 年間発ガン数の見積り

ガソリンに対する規制についての 考察

# 大気測定装置図



A: 大気中窒素酸化物測定装置

B: ガスクロマトグラフ制御システム

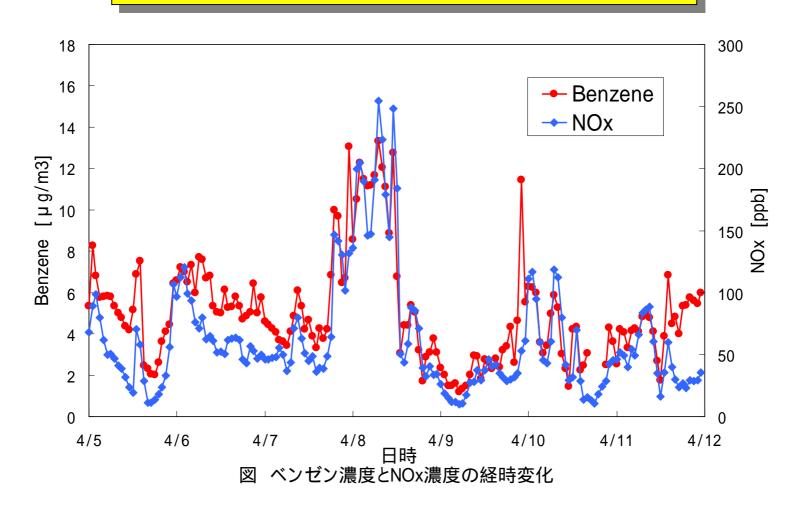
C: 大気試料濃縮装置(吸着濃縮型)

D: 濃縮装置専用コントローラー

E: 大気試料吸引ポンプ

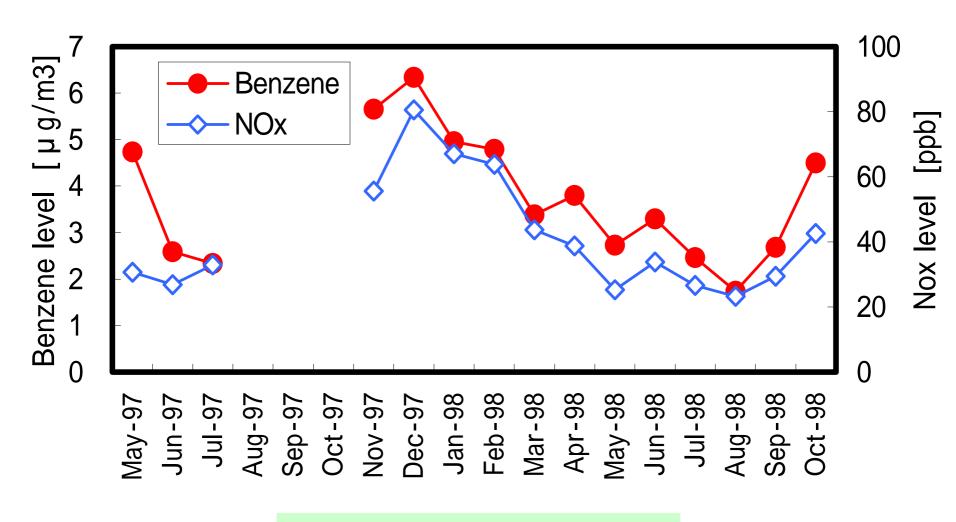
F: ガスクロマトグラフ

測定地点:横浜国立大学環境科学研究センター(以下、環境研)


測定期間:1997年5月~1998年10月

測定間隔:1時間

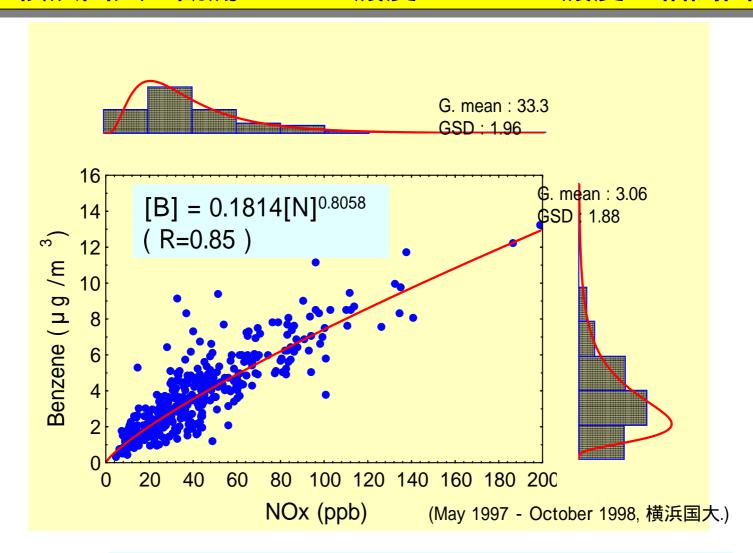
測定物質:NO,NO2,ベンゼン、トルエン、キシレン、エチルベンゼン、


クロロベンゼン、スチレン

# ベンゼン・NOx濃度の週内挙動(例)

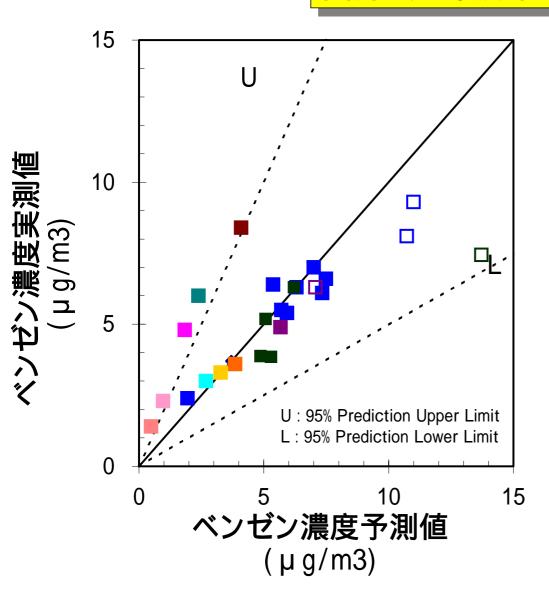


ベンゼン、NOx濃度は、同様の濃度挙動を示す。


# ベンゼン・NOx濃度の季節変化



# 夏低く、冬高い。傾向が一致


HP http://www.kan.ynu.ac.jp/~benz/ に掲載

#### 横浜国大で観測したNOx濃度とベンゼン濃度の相関図



NOx濃度とベンゼン濃度との間の回帰式 [B] = 0.1814[N]<sup>0.8058</sup> が得られた

#### 回帰式の有効性の確認



- 東京 一般環境
- ◆ 横浜 一般環境
- 川崎 一般環境
- 札幌 一般環境
- 新潟 一般環境
- 倉敷 一般環境
- 名古屋 一般環境
- 大阪 一般環境
- 大牟田 一般環境
- 松江 一般環境
- 宇部 一般環境
- 篦岳 一般環境
- □ 大阪 沿道
- □ 東京 沿道
- □ 川崎 沿道

# 本研究の構成

## NOx全国監視局データ

(一般局)1446箇所 (自排局)382箇所



NOx曝露濃度に対する 人口分布

#### 大気連続測定

ベンゼン、NOx濃度の実測



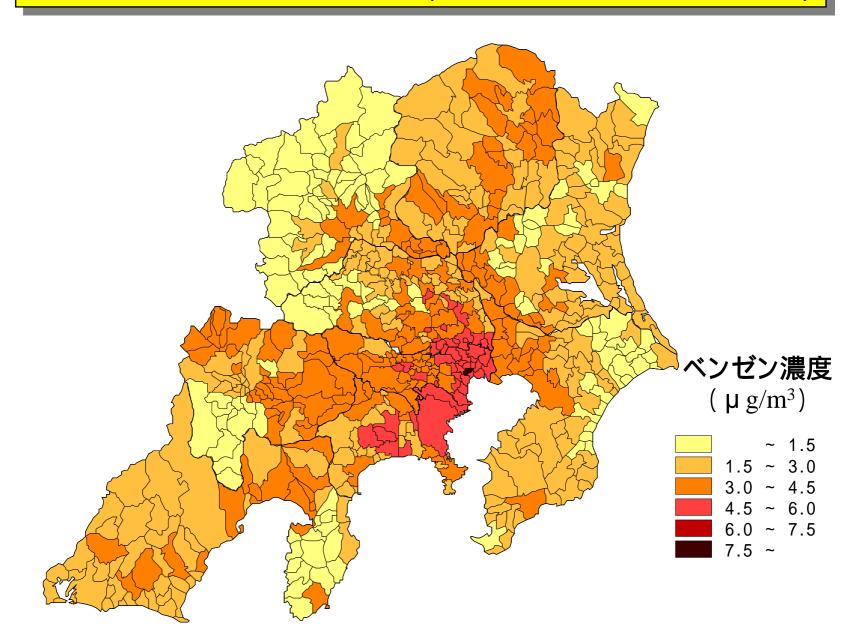
#### 濃度相関の解析

NOx濃度とベンゼン濃度 の回帰分析

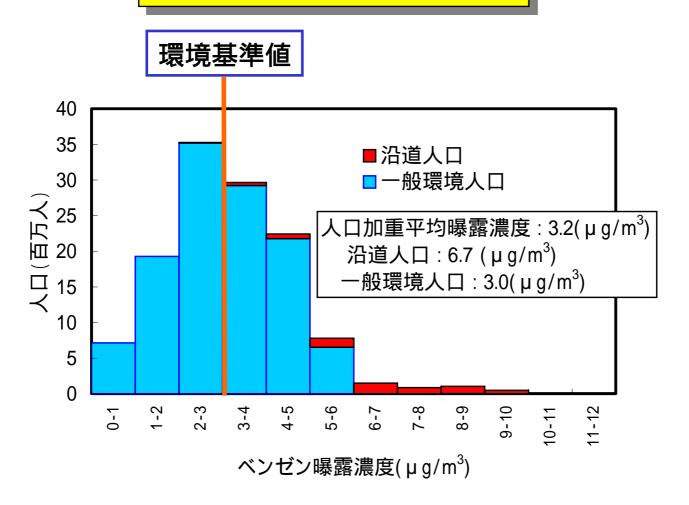




ベンゼン曝露濃度に対する人口分布



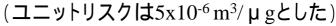


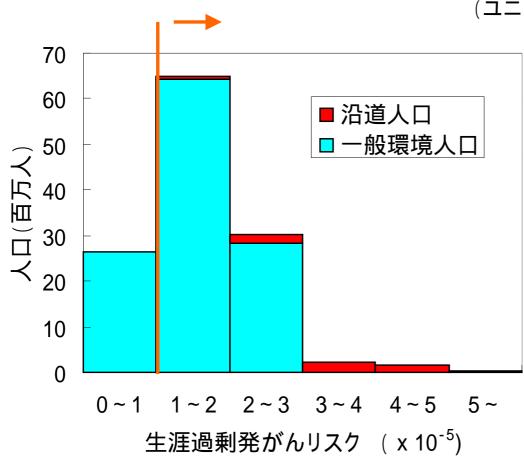


リスク便益分析

ベンゼンによる発ガンリスクの人口分布 年間発ガン数の見積り ガソリンに対する規制についての 考察

# 予測されたベンゼン濃度分布(関東地方、山梨、静岡含む)




#### ベンゼン濃度と人口の分布




・全人口の51%が環境基準以上の濃度のベンゼンを曝露

# 発ガンリスクの算出

生涯発ガンリスク = ユニットリスク  $(m^3 / \mu g) \times ベンゼン濃度 (\mu g / m^3)$ 





79%の人口が 1x10⁻⁵以上のリスク を被る。

# 集団リスクの算出 (Aggregated Population Risk)

- ・集団リスク
  - = 各地域の {(人口) x (曝露濃度) x (ユニットリスク)} の和
- ・年間リスク
  - = (集団リスク)/(平均寿命)

| 地域   | 人口(万人) | 集団リスク | 年間リスク |
|------|--------|-------|-------|
| 沿道   | 640    | 215   | 3.1   |
| 一般環境 | 11900  | 1787  | 25.5  |
| 計    | 12500  | 2002  | 28.6  |

大気中ベンゼンへの曝露によって、日本全体で年間28.6件の発ガンが予想される。

#### ガソリンに対する規制についてのリスク便益分析

- ガソリン中のベンゼン含有率については、平成11年末を目処に、1体積%を目処として低減を図ることが適当である。(中環審答申)-

#### ガソリン中のベンゼン含有率と排気ガスによる ベンゼン排出量との関係



ベンゼン含有率が2.3体積%(規制前水準)から0.7体積%(規制後予測水準)に削減されたとき、自動車排出ガスによるベンゼン排出量は30%削減されると予想される。

# ガソリンに対する規制によるリスク削減

#### <規制によるベンゼン排出量の変化>

|              | ベンゼン排出量(トン/年) |       |      |  |
|--------------|---------------|-------|------|--|
| 排出源          | 規制前 *         | 規制後   | 削減率  |  |
| 自動車          | 13200         | 9240  | -30% |  |
| ガソリンタンク、スタンド | 1200          | 365   | -70% |  |
| 化学工業         | 3800          | 3800  | Ο%   |  |
| コークス炉        | 100           | 100   | 0%   |  |
| 計            | 18400         | 13505 | -27% |  |

\*中央環境審議会

ガソリンに対する規制によって、ベンゼンの全排出量は27%削減されると 予想される。ベンゼン濃度は排出量に比例すると考えると

削減されるリスク = 28.6件/年 x 0.27 = 7.7件/年

# リスク便益分析

ガソリン中のベンゼン含有率削減のための1年あたりの費用

```
設備投資額:約1000億円(石油審議会より)
初期投資1000億円に25年償却、年利5%を仮定すると
1年あたり 70億円
運転コスト 0.26円/リットル x 5000万 *ロリットル/年 = 130億円
年間コスト 70億円 + 130億円 = 200億円
```

この対策によって削減されるリスクは1年あたり7.7件だから ガン死を1件削減するための年あたりコストは

```
(リスク削減費用)/(削減リスク) = 200億円 /7.7件 = 26億円 /件
```

# まとめ

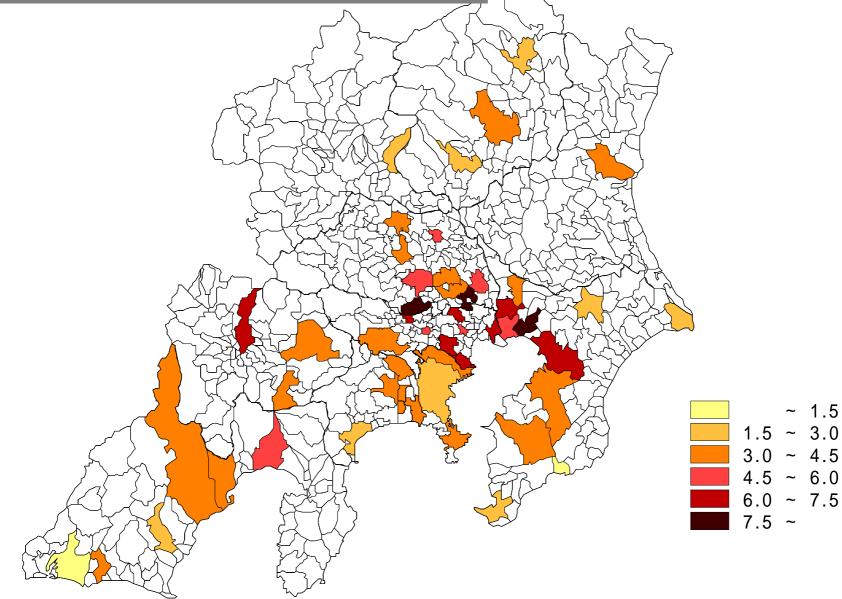
日本における大気中ベンゼンの人への曝露評価を、全国において 測定が行われているNOx濃度からベンゼン濃度を予測するという手 法で行った。

ベンゼンの発ガンリスクに対する人口分布を求め、集団リスクを算出した。

日本における大気中ベンゼン曝露による1年当たりの発ガン数は28.6件と見積もられた。

ガソリンに対する規制によってガン死を1件削減するための、年あたりコストは26億円/件と見積もられた。

# 予備


# なぜベンゼン濃度の予測にNOxのデータを使うか(1)

#### < 自動車からの排出割合が多い大気汚染物質 >

|          | 自動車からの排出量 | 全排出量    | 割合          | 備考         |
|----------|-----------|---------|-------------|------------|
| ベンゼン     | 13200トン   | 18400トン | <b>72</b> % | 平成8年中環審報告書 |
| NOx(全国)  | 55万トン     | 224万トン  | 25%         | 平成6年度      |
| NOx(東京都) | -         | -       | 68%         | 平成6年度      |
| CO       | 191万トン    | 334万トン  | 49%         | 平成6年度      |

NOx,COは自動車からの寄与が大きいので、ベンゼン濃度とも相関が高いことが予想される。

# ベンゼン濃度の実測濃度分布 (平成9年度 有害大気汚染物質モニタリング調査) $1.5 \sim 3.0$

