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Abstract

Environmental threats, such as habitat size reduction or environmental pollution,
may not cause immediate extinction of a population but shorten the expected time to
extinction. We develop a method to estimate the mean time to extinction for a density-
dependent population with environmental fluctuation, and compare the impacts of different
risk factors. The relative importance of different risk factors is evaluated by the decrease in
the mean extinction time. We study a formula for the reduction in habitat size that
enhances extinction risk by the same magnitude as a given decrease in survivorship caused
by toxic chemical exposure, We also study an estimate of the parameters from time series
data. By Monte Carlo sampling, we can remove the bias very effectively and determine the
confidence interval. We propose to use "risk equivalent" in ecological risk management of

toxic chemicals.
1. Introduction
Nakanishi (1995) proposed that the risk of extinction of animals and plants might

be used as the basis for quantifying ecological risk. The extinction of species, race, or any

taxonomic unit is an unrecoverable and deprives future human generations of the
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opportunity to enjoy its potential use. Even if most species are of no direct economical
value, their loss serves as a good measure of ecological risk because it is correlated with the
magnitude of the general threat to the ecosystem. Hence extinction risk is a good candidate
of a measure upon \i}h‘ich'quantitative risﬁ ‘managerr.ment can be based, -
Suppose that a fraction of the habitat of a population is demolished. This may not
cause immediate extinction, but it depresses the population size to a lower level than before,
resulting in a shorter méan time to extinction (Fig. 1). Similarly, the mean time to
extinction should be shorten if the population is exposed to a toxic chemical in a low
concentration that reduces the survivorship or fertility. We developed a method to compare
different risk factors by using a common currency of mean extinction time (Hakoyama and
Twasa 2000a, b; Hakoyafna et al., 2000; Iwasa et al., 2000). For this purpbsc we need to
consider a population model that incorporates density-dependent population regulation and

environmental fluctations (see also Middleton and Nisbet 1997: Saether et al. 1998).
Population size

Fig. 1 Extinctio * $
n

Many models in conservation biology handle the situation in which the population
shows a clear negative trend, and the expected time to extinction is relatively short. In such
a case, a useful method of risk estimate is available, which is based on a density-independent
population model considering fluctuating population growth rate (Lande and Orzack 1988;
Dennis et al. 1991). However this is not suitable for density-dependent populations, which
would go extinct only after a long period of fluctuation around the equilibrium.

In this chapter, we present a method to evaluate the extinction risk of a density-
dependent population and discuss the relative impact of the decrease in habitat size and the
decrease in survivorship. This gives a basis of the next chapter by Mayuko Nakamaru who

evaluated the ecological risk of DDT to a herring gull population.
2. Canonical Model

As a simple standard model of population dynamics, we choose a model that

includes the minimum number of factors needed to consider the extinction risk of a
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density-dependent population. Let X be the population size at time . The dynamics are

expressed in terms of the following stochastic differential equation:

%: rX(l—%)+ G,E (D)o X+&,(t)e VX, (rKand ©,>0), (1)

where 7 is the intrinsic rate of population growth, X is carrying capacity, &,(t) and &,(t) are

independent white noises for environmental and demographic stochasticities, and ©, is the

intensity of the environmental fluctuation. We call Eq. (1) "canonical model." We here
assume Stratonovich-calculus in the environmental fluctuation (denoted by a small open
circle) and Ito-calculus in the demog'raphic stochasticity (denoted by a solid circle). This
choice is made for the convenience of parameter fitting to time series data (see Hakoyama
and Iwasa 2000a for detail).

For a long-term sustainable population, the small size of initial population causes a
relatively high extinction rate in the first several generations. Once the population survives
through the initial critical period and reaches the carrying capacity, the population may stay
around it for a long time before extinction. Thereafirer, the extinction time follows an
exponential distribution, and we can treat extinction events as if they occur at random
(Quinn and Hastings 1987). The extinction risk can then be characterized by a single

quantity -- mean time to extinction, which can be calculated as

Xp oo R(K+D)+1
o Jul 4 x+D (y+ D)y
2r

where R=—— and D= —1; (Hakoyama and Iwasa, 2002). We use the average
g,

e €

extinction time starting from the carrying capacity x, = K in the following analysis (see

Lande 1993; Lande et al. 1995).
3. Comparison of different risk factors
Effect of reduction in habitat size

When the habitat area is reduced, carrying capacity K becomes smaller and the

average extinction time T becomes shorter. The way it depends is

logT = 2—j';log K +[terms independent of K], (3)
o

e
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(Ludwig 1976; Lande 1993; note the difference in the expression of proportionality
coefficient caused by their choice of Ito-calculus). The mean extinction time is a power
function of the carrying capacity T e K 2% The dependence of the mean extinction time
on carrying capacity varies with the environmental fluctuation. When the environmental
fluctuation is small, the average time to extinction T increases very quickly with carrying

capacity K. In contrast when environmental fluctuation is large, it increases with K slowly.

Effect of decrease in survivorship
Consider a population exposed to toxic chemical substances in the environment.
Let & be the magnitude of the subsequent reduction in survivorship per generation.

Population dynamics have an additional negative term for the loss:

%: rx(1-7}§-]+ 0.8, (1) X +£,(1) o VT - X, .

=;X(1_§)+oez;e(t)oxwd(r)««/i

~ 7 a . . . .
where 7 =r—0, K=K —K— . The decrease in survivorship by ¢ per generation makes
.

both r and X smaller in the canonical model Eq. (1), and its impact on the mean extinction
time can be evaluated by using Eq. (2). The same is applicable to the risks caused by

pathogens, genetic deterioration, or any process that decreases the survivorship or fertility.

Comparing different risk factors

Figure 2a shows the relationship between the decrease in the survivorship per
generation ¢ and the mean extinction time 7. This was calculated for severalcarrying
capacities X indicated by different curves. Two other parameters (intrinsic rate of
population growth r and environmental noise 0‘3) are the estimates for the crucian carp in
Lake Biwa, Japan, from fishery records (Hakoyama and Iwasa 2000a). Around Lake Biwa,
there are many lakelets and small populations of crucian carp that may have similar r and
0'3, but different K. The estimate of mean extinction time shown here is the extinction risk
of crucian carp populations in these lakelets. Mean extinction time decreases quickly with
o and logT declines with ¢ almost linearly. The decrease in logarithmic mean extinction
time is larger for a large population (K = 105) than a small population (K = 102). This
implies that the decrease in the survival rate per generation ¢f are very effective in
threatening large populations that are otherwise quite stable. ‘

Figure 2b illustrate the decrease in the mean extinction time and the habitat loss. A

value on the horizontal axis of 50 implies that half of the area is demolished without
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changing the condition in the remaining part of the habitat. Mean extinction time decreases
with habitat area, initially at a slow rate and then rapidly decrease to zero between 90% loss

and 100% loss. Note that the curves corresponding to different K are parallel to each other,
implying that the decrease in a fixed fraction of habitat area causes the same decrease in log

T, irrespective of the total population size X.
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With a small carrying capacity K = 10%, 25 % decrease in survivorship per
generation is needed to cause the risk equivalent to 50 % habitat loss. In contrast with a
large carrying capacity K = 10°, 5 % decrease in survivorship per generation (¢ = 0.05) is
equivalent to about 50 % habitat loss. In general, the magnitude of the reduction in habitat
size in terms of the decrease in the logarithm of carrying capacity Alog K is approximately

proportional to the decrease in the survivorship per generation .

o}

2
AlogK=[ 5 1ogr)9,

r

(5)

F

where T is the mean extinction time (Hakoyama et al., 2000b). The proportionality
coefficient increases with carrying capacity K because it increases log7 if the other two
parameters are fixed. This implies that the relative importance of the decrease in the habitat
area compared to the decrease in survivorship is high for unstable and endangered
population (with a small log7); but is low in stable populations (a large logT).

To relate the decrease in survivorship & and concentration of toxic chemicals z, we

need to use a nonlinear relationship between them as summarized by Tanaka {1997).

4. Parameter Estimation from a Time Series

To apply the model to field populations, we need to estimate three parameters.

Hakoyama and Iwasa (2000a) studied the estimate of unknown parameters from a time
series of population size {X (t)}
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For density-dependent populations, the population size fluctuates around the
carrying capacity for a long time before going extinct. We may consider quasi-equilibrium
probability distribution of population size controlled by logistic growth and environmental
stochasticity. If the demographic stochasticity is much smaller than environmental
stochasticity, as is the case if the population size is moderately large, carrying capacity X is

equal to the expectation of population size:
K =E[X(1)], (6)

in which the expectation can be replaced by the average over the years. Equation (6)
implies that the carrying capacity can be estimated simply from the average population size.
This is possible even if the magnitude of fluctuation in the population size caused by
environmental stochasticity is large.

The environmental stochasticity can be estimated from the magnitude of population
fluctuation, as the variance of the population size increases with the environmental

stochasticity o‘f. If the intrinsic growth rate r is known from separate sources, we can

estimate the carrying capacity by the average population size from Eq. (6), and then the
environmental variance O'f by the observed variance of the population fluctuation. If a
reliable estimate of intrinsic rate of population growth r is not available, we can still estimate
r from only a time series of population size. If r is larger, autocovariance drops faster, i.e.
the population fluctuates more quickly over time. Hakoyama and Iwasa (2000a) developed
the approximate maximum likelihood (or the AML) estimate (see also Iwasa et al., 2000).

Mean and percentiles of estimators

To know the reliability of the estimation method, Hakoyama and Iwasa (2000a)
carried out Monte Carlo analyses. We generated a number of independent Monte Carlo
time series data using the model with a single set of parameters, and then calculated the

AML-estimate of the three parameters (?, K, 6’,_,) for each time series. The average of the

estimator 7 was larger than the value used for generating these time series data 7, implying a

bias. The biases of K and 6‘6 were small, The distribution of mean extinction time T

calculated from these parameters had also a systematic bias. Figure 3 illustrates the mean
and the 2.5 and 97.5 percentiles of the AML-estimates for different length of time series
data. Both bias and variance of estimates are large for short time series (e.g. the length is

10), and they do not disappear even for a very long time series (such as 1000 data points).

Bias-corrected estimation based on Monte Carlo sampling
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We can remove the bias in estimate by Monte Carlo iterations (Hakoyama and Iwasa

2000a). The basic idea underlying the method is as follows: Suppose that we generate a
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number of independent Monte Carlo time series by a model with parameters (r K, 0'3),
and then calculate the AML-estimates (r‘,K *,0‘;) for each. The averages of these values
are different from (r, K, 0'3), becauseof thebias. For example, the AML of r tends to
overestimate the true value : E[r*] > rHence the AMIL-estimate calculated from an

K

ohs?

observed time series, denoted by (robs,

o'e'm),, is likely to be systematically different
from the true value. To remove this bias, we search for a value r,_, which is smaller than the
observed value 7, , and the model using 7,, should generate the AML estimator that has
the mean equal to #,, . Since there are three parameters, we should search for a set of
parameters (rbc, K, O'e,,,c) so that the model with these values can generate the Monte
Carlo time series with the AML having the averages equal to (rﬂbs,Kabs, Ge.nbs)' The bias
corrected estimators (rbc, K, o, bc) can be obtained by iterative Monte Carlo calculation.
Figure 4 shows that the magnitude of bias in estimate of r increases with O‘f from
0.1 to 0.5 (» = 0.1). These correspond to the cases in which the standard deviation of the

population size (approxirmately equal to («,}o‘f /ZF)K ) is larger than the mean, and the

AML-estimate of r is much higher than the true value, showing a large bias. In contrast, the
average of the bias corrected estimate based on Monte Carlo sampling with a mildly long

time series (the length of time series is 50) are indicated by squares, which are close to the
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true value indicated by a broken line. This demonstrates the effectiveness of bias correction
procedures based on Monte Carlo sampling. '

To evalulate the reliability of the estimate, we can obtain the confidence intervals of
the estirnates based on Monte Carlo methods (Hakoyama and Iwasa 200a; Iwasa et al.
2000).

Estimate of mean extinction time when r is known

In many cases, we have a relatively accurate estimate of intrinsic growth rate r based
on biology of the species, but we need to estimate carrying capacity K and environmental
noise o‘f from a time series of population size.

Figures 3e and 3f illustrate the averages and percentiles of the AML-estimates when
intrinsic population growth rate r is known. The variance of 6} is smaller in Fig. 3e than in
Fig. 3d when K is unknown. Note that the estimate of logf" is very accurate even for a
short time series {e.g. the number of data points are as small as 10) if r is known. The
knowledge of r greatly improves the estimate of parameters and the mean extinction time
log T, which is accurate even without Monte Carlo bias correction.
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