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Abstract

Application of the ecological models was attempted to several important aspects in the ecological
risk assessment. Since the extinction probability or the mean extinction time is one of the most
useful endpoints which are utilized in biological conservation, parallel approaches that convert
ecological hazards into the extinction risk are also useful for the ecological risk assessment of
chemical pollutants. The present study attempts extension of the PVA (population vulnerability
analysis) o exarnine population-level effects of pollutants in terms of extinction.

Because the intrinsic rate of population growth, r, is one of the most important parameters that
determine persistence of a population, I reviewed ecotoxicological data that estimated the
population-level effects in terms of r, and examined three mathematical models, i.e., the power
function model, Weibull model and the quadratic function model, for describing the coneentration-r
curves. The power function model provided the best fit to data.

To incorporate the interspecific interactions, e.g., the prey-predator relationship, into the
ecological risk assessment is a difficult task. The standard PVA docs not directly examine the effects
through interspecific interactions. The present study attempted to incorporate population dynamics
of food species (planktons) to a target fish species with an extended matrix population model.

Introduction
Estimation of population-level effects of chemical pollutants is a basis of ecological risk assessment
(Suter 1993). The population-fevel effects are associated with reductions in the ability of a
population to proliferate and hence extinction of a population. To evaluate the pollutant effects on
populations in terms of decreases in “the intrinsic rate of population growth” is especially important
because the intrinsic rate of population growth determines the liability of a population to extinction.
For protection of a ecosystem, persistence of populations of composite species is necessary.

In quantitative risk evaluation of chemical pollutants, dose-response relationships provide the only
source of empirical grounds. Nonetheless, as for the dose-response relationships in terms of the



intrinsic rate of population growth, very few statistical analyses based on mathematical models have
been conducted. This study will review ecotoxicity data that estimated pollutant adverse effects upon
the intrinsic rate of population growth, and will determine the most likely dose-response function.
And the chronic data will be summarized into a couple of index parameters of the model. T aiso
estimated acute-chronic regression slopes in terms of the estimated parameter values and acute
LCops.

Using the derived dose-response function and exposure date of some chemical pollutants I
conducted ecological risk assessment based on reductions in mean extinction time (MET analysis).

There is a long history of arguments about two major problems in applying the toxicological data
obtained in laboratories to actual hazards by chemicals in nature. First, in nature most chemicals
exhibit much lower environmental exposure concentration than experimental exposure
concentrations in laboratories. Therefore, extrapolation from experimental data to responses to low
concentrations is inevitable. Second, in many real circumstances organisms encounter many
chemical pollutants at the same time, and the compound effects may not be explained by additive
effects of the single actions of the chemicals. The present study is intending to resolve these
problems by introducing an alternative definition of risk, “reductional risk”. The reductional risk of a
specific risk factor is defined as a decrement of the total risk that {s caused from reduction of the risk
factor. The total risk means the observable risk level that results from all risk factors. The total risk is
conceptually decomposed into infinitesimal risks that are attributed to specific risk factors, the
framework is called “the top-down decomposition of reductional risk™ in this paper.

There is another complexity concerning the ecological risk assessment. Since real ecosystems
consist of many species which are interacting with each other. In many cases hazards by chemical
pollutants to ecosystems appear at the level of community through interaction between composite
species (Bartell et al. 1992). In the present study, I will combine species interaction of prey-predator
relationships with a single species population vulnerability analysis (PVA), which focuses on the
medaka fish (Orizyas latipes). The interacting species are assumed to be a zooplankton, e.g.,
Daphnia sp, and a phytoplankton, e.g., Scenedesmus sp. The present model is not a comprehensive
ecosystem model, nonetheless, interaction between species can be partly included in the extinction
risk estimation of a focused species.

Extinction Risk Analysis
Mean Extinction Time Analysis (META) with the Diffusion Model
Analytical solutions for mean extinction time (MET) or extinction probability for a specific duration
have been investigated by employing the diffusion approximation (Lande 1993; Foley 1994,
reviewed by Iwasa 1998; Matsuda 1998; Tanaka 1998). Extinction is induced by several factors, I.c.
cnvironmental stochasticity, demographic stochasticity, catastrophic events. Even focusing on a
single factor, predictions of MET vary noticeably between theoretical models which are based on
different assumptions. Nonetheless, the dependence of MET on demographic and environmental
parameters are fairly compatible between models (“scaling law”, Lande 1998). The environmental
stochasticity is a major factor inducing extinction of relatively large populations. The other three
factors govern extinction of small or declining populations, which are essentially at the final phase of
extinction. The ecological risk estimation may be based on moderately large populations because
most extant populations in nature are not endangered. Therefore, the environmental stochasticity
may be the primary factor of extinction when we evaluate extinction risk of chemical pollutants.
_According to the scaling law, MET is roughly proportional to a power of population size:
T « N¥"' 'where T is MET, N the population size, r the intrinsic rate of population growth,



and V, the environmental variance of r. Thus MET decreases geometrically with the relative
magnitude of the mean population growth rate to the environmental variance of growth rate, r/Va .
Population Vilnerability Analysis (PVA) with the Matrix Model

Many test species, in particular fishes, are not suitable for complete life cycle experiments mostly
due to long life span and large labor needed for rearing the animals for a long period. Partial life
cycle test, which examines semi-chronic toxicity for survival and reproduction in each (preferably
early) life stage, is the best alternative. The most standard method to simulate population dynamics
of such stage-structured populations is Leslie matrix model. The population numbers of each life
stage are denoted as a vector n of population size, n=(n, n, 5 ny n5)" where #, is population size of
the i-th life stage and T is matrix transpose. Population dynamics is expressed as a recurrence

equation,

n(t +1) = L{t)n(¢)
where ¢ is time in generations. If only the last
life stage reproduces, the projection matrix L
has elements (vital rates) as follows,

p(l-5) 0 0 0 fs
D5y Pa(1-5,) 0 0 0
L= 0 P2s; p(l-5) 0 0
0 0 Ps5y P, (1 - 54) o
0 0 0 DSy Ps

where p, is probability of survival per unit
time of the i-th stage, s, is a proportion of
survived individuals in the i-th stage to enter
the next stage per unit time, and f, is per
capita reproduction of i-th stage. If some
elements depend on time, L turns out to be
time-dependent.

The population dynamics is simulated with the matrix model, and probability of extinction until
specific time is directly calculated from the simulations (see the later section).

Population-Level Effects of Pollutants in Terms of the Population Growth Rate

The intrinsic rate of natural increase, », or the
population growth rate is one of the most
important benchmark parameters since it
determines the persistence or the mean
extinction time of populations. The most
complete experiments designed for estimating »
are the life table evaluation and the population
growth experiments (Tanaka 1998). In this
section I will review published data on dose-
response relationships in terms of r (the data
source is listed in Tanaka 1998), and c¢xamine
mathematical models to describe the responses.

At first I collected 63 concentration-r
relationships from 38 publications. 1 examined

three mathematical models for fitness to the
data, i.e., the power function model, the
Weibull model, and the quadratic function
model.

model equation

power function model

on {9

Weibull model

ol

quadratic function model ~ r(x)=v (1 -ox - .ﬁxz)

The mathematical models were applied to all data sets with the maximum likelihood method, and
the fitness to data was compared between the models based on the model selection criterion (MSC).

The MSC is defined as

MSC=1In
n

Z w,(x, - Elx])*

" (x, -x)? . =
& 2p ,where X, isdata, X mean value, E[x,] the expected

value, p the number of parameters, w, weighting term, and n the number of data (Newman 1994).



The MSC scores represent the goodness of a specific mathematical model in fitting data. The
distribution of MSCs for all data sets with the three models are presented in Figure 1.
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Among the three models the power function model indicated the best fit, since the power function
model produced a larger MSC score than the quadratic model (p<0.01, Wilcoxon-test), and a slightly
larger one than the Weibull model (p<0.05, Wilcoxon-test). Thus the analyses will concentrate on the

power

function model.

The referenced data sets explored responses of various test organisms by various chemicals, and
the test conditions may be considerably unequal between experiments. And properties of responses,
especially the curvature, may be specific to organisms or chemicals. Nonetheless, it {s convenient for
risk estimation if there is a general trend in the population-leve] responses. In the next I roughly
estimate the general B -value that approximates the whole data by the following procedure. (1)
Exclude data sets that produced MSC scores smaller than 1.5 or larger than 8. (2) All data are
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Fig. 2 Plots  of the
standardized concentrations and
responses.

From the entire data set, the maximum
likelihood B -value was estimated as 3
=1.84.



standardized with the maximum r and the @ -value (exposure concentration at which r reduces to 0.
Observed r is transformed to r/ 7, and exposure concentration to x/ . (3) Determine the best-fit 3 -
value based on the total data set. (4) Estimate the standard error and the distribution of 8 with the
bootstrap resamplings (500 resamplings of 10 samples).

Resampled A-values based on 1he geoneiric model (10 samples)

Fig. 3 The distribution of f3-
values among resampled subsets
of data (group size is 10 and 500
trials of resamplings)
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geomelric mean: 2.00
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From the randomly resampled subsets  of
data, the arithmetic mean and the geomelric

mean of the B -value was estimated 2.46 and

2.00, respectively.

The standardized dose-r curve and maximum likelihood fitting to the power function model are
presented in Fig.2. Both estimates are fairly compatible with the estimate based on the entire data set.
The long but slight tail of 8 in the larger direction may reflect a few very improper resamplings
and may result in overestimated 8 -values. As a whole the best empirical ground supports that the
£ -value in the power function model is approximately 2.

MET Risk en Populations by Individual Exposure

In this section I will demonstrate MET risk estimations for daphnia populations under the
assumption that 3 -value is approximately 2 for all chemicals and species. Ideally, MET risk
estimations need population-level data in terms of r for all chemicals and test organisms. However,
only a minor proportion of chemicals and organisms is examined for the population-level responses.
Then here I introduce an acute-chronic extrapolation. Among zooplanktons the regression siope of
& -values to LCys is 1.34. The @ -values are estimated from LCqs with @ =1.34[LCs).

S0 T From the scaling law, a small reduction of MET in

logarithmic scale due to a reduction of r is
w0 - . calculated as A logT=2(Ar/v)logh, where N is the

a equilibrium population size. Putting 8 =2 and &
=1.34{LCy,] into the power function model, we
100 ( o obtain AlogT=-1.114A*(y/v)logN, where h represents
. - . the exposure concentration relative to LCy,. The
el . ,  MET risk estimation by the above equation is based
© 4 @ d 0 op two simplistic assumptions. First, there is no
LCso heterogeneity in the curvature of responses in r

Fig.4. Regression of @-values to LCy, {an identical B -value) among chemicals and

species. Second, the acute-chronic extrapolation is

regression: ¢ = 1,34[LC50]

acceptable. Uncertainties due to the acute-chronic extrapolation and experiments are not taken
account. Due to those limitations, the present results of MET analysis should be interpreted
cautiously. The MET risks for some chemicals are exemplified in Table 2.



Table 2. FExtinction Risks of Agricultural Chemicals and
Surfactants upon Daphnia Populations (T: mean extinction time)

ghemicals max.cong. (ppb) Daphnia LCg, {ppb) AlogT* AT/T%
malathon 45 13 -1.001E+(1 100.00
pyridaphenthion 12 a8 -8.332E+00 100.00
LAS 3000 5700 -2.314E+(01 “100.00
diazinon 2 78 ~5.493E+00 100,00
nonylphenol 1 75 -7.488E-01 82.17
fenocarb 12 320 -1.175E-01 2370
fenitrothion 0.2 8.2 -3.948E-02 8.691
benthiocarb 7 750 -7.278E-03 1.662
fenthion 0.05 55 -6.905E-03 1.577
mefenaset 8 1840 -1.579E-03 0.363
molinate 24 40000 -3.008E-05 0.00693
simetryn 9 27000 ~9.283E-06 0.00214
pretyrachlor 6 26800 ~4.283E-06 0.00098
hutachler 2 25000 ~5.347E-07 ©.00012

* K=10°%, rppo=0.4, v=0,032

The Topdown Risk Decomposition and Compound Exposure

In real circumstances, pollution may be caused from a number of chemicals, each of which exists at
a very low environmental exposure concentration. The traditional way to estimate the risk of a
specific chemical under compound exposure is to calculate the response to the chemical separately
and combine all individual responses in order to estimate the total compound response. For example,
the response addition assumes that the total response, R {x), is calculated from products of residuals
of responses to each chemical, R/{(x)=1—II,(1-R,(x)). Each response under low exposure is
extrapolated from experimental data which were obtained under much higher exposure
concentrations. Nonetheless, addition of the low-dose responses may not be combined to produce the
true total effect because each response is predicted under non-contaminated laboratory environments
without taking into account interaction between chemicals.

Here I present a hypothesis of compound effects of chemical pollutants and an alternative
definition of risk, i.e., the reductional risk. The reductional risk of a pollutant is defined as the
decrement of the entire risk due to all factors when the causal poliutant in interest is excluded from
the environment. For simplicity, I illustrate it for the case where all pollutants follow an identical
dose-response curve and they act interchangeably (Fig. 5).

Fig. 5. Schematic Drawing of a present risk level
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From the viewpoint of toxicology, the dose-response relationship of a pollutant in interest is taken
at the concentration that would bring about a response corresponding to the observed total risk level
rather than at a very low concentration. This is based on the idea that effects of a number of
pollutants accumulate rather than they act independently. Different pollutants are assumed to interact
with each other with the same magnitude as a pollutant interact with itself (within conspecific
molecules). Of course different chemicals may exhibit different curvatures of responses. And the
entire response may be a complex function of compound effects of pollutants, R{x), where x=(x, x,
... x;) and x; is concentration of the i-th pollutant. Nonetheless, if the above assumptions are met, the
decrement of risk (the reductional risk, A R[x;]) may be estimated from the differential of the entire
response to the exclusion of a pollutant, AR[x;]= 0 Ry{x)/ dx]. A x;. And if a pollutant interact
with other pollutants as well as with the identical pollutant, the differential may be equivalent to that
of the response function of the poliutant in interest, AR[x)]=0 R(x)/ x|, A& x;.

Population Vulnerability Analysis of the Medaka-Plankton System under Chemical Pollution
Another complexity characteristic in the ecological risk assessment arises from interaction between
species. The standard population vulnerability analysis (PVA), which focuses on extinction risk of a
species, is not designed to detect such indirect effects through interaction between species.
Nonetheless, the interspecific interactions can be partly incorporated into the PVA. Although the
present model is highly generic and simplistic as regards composition of species, some essential
properties of pollutant effects through interspecific interactions may be revealed by such an extended
population dynamic model. I analyzed a three-species system, which comprises of a phytoplankton,
and a zooplankton, and a small fish populations. The composite species are not exactly specified but
1 postulate the daphnia (Daphnia sp.) as the zooplankton and the medaka (Oryzias latipes) as the fish.
The three trophic levels are cascaded as the fish predates the zooplankton, which in turn grazes the
phytoplankton. And the fish has four life stages, i.e., adulls, juveniles, larvae, and eggs. The
zooplankton cannot reproduce nor sustain without the phytoplankton, the fish reduces survival rate
and reproduction when they cannot predate the zooplankton. The effects of predation and grazing on
reproduction of the predator and the grazer saturate as the food species increase (the Holling’s type
1I functional response, May 1974). The effects of pollutants on reproduction of the phytoplankton
and the zooplankton are assumed to follow the power function model with 3 =2. The responses of
survival and reproduction of the fish are subject to the logistic model, exp(- @ + S x)/{1+ exp(- & +
x)}, with 3=2.The @-value of the logistic mode! was determined with =8 XLCj,

If we write the population density of the phytoplankton at time ¢ as n,(f), that of the Zooplankton
as n,(f), and those of the four life stages of the fish as n,(t) (egg), ne(t) (larva), ny(t) (juvenile) and
ng,(t) (adult), the difference equation of the population dynamics is described as

D] [T, 0 0 0 0 07([n,]
n(t+1) 0 7, 0 0 0 O0f/|~@®
na@E+D| 10 0 T, 0 0 T [na(®)
na+D| |0 0 L, T, 0 0 |n,0
nf3(t + 1) Y 0 0 Ts,4 I;.s 0 N”(t)
ng,(t+1) 0 0 0 0 T Tl |n.(0)
where T, = exp [r,, (1-m,(x, )){1 - —i@—} - D, (1) | Taz=explL()(1-m,(x,))-D D),
K,(1-m,(x))



T33=p1(1-s Y 1-mux)), Toz=ps\(Lmale)), Taampa(l-sollp)(1-me()) Tsmpasdp(t)(1-mp)),

Ts,5=ps(1-ss )@ (1-ma(x)), Tos=psslu)(1-mpx,)), Toe=pdu()(1-meulx)) and T3 g=f 1, ().

The population growth of the phytoplankton and the zooplankton
populations are denoted by T, ; and T, ,. r and X are the intrinsic Box 1. The decrement

rate of population growth and the carrying capacity. I and D denotes ?ft po{;i)u]attion rfég::’;g
the population growth by predating or grazing food species and ale aue to p

) . or grazing,
the population decrease due to predation (see Boxes). The response
to chemical pollutants are denoted as m(x) in the whole equation. D,(6)= _am(t)
The survival and growth (transition to the next life stage) of eggs L+hyn, (¢)
of the fish are denoted by T, ; and T} 5, respectively. In the same () = ayh, (1)
way, the survival and growth of larvae and juveniles are denoted ) T+ hyn, (1)

by Ty Ts,4 and T 5, T4 5. The adult survival and per capita fecundity 2 and & are parameters

are denoted by T and Ty . f is the potential fecundity and I, that express saturation of
denotes effects of foraging. predation.

Here I demonstrate the population
dynamics under exposure to diazinon. Box 2. The effect of predation or grazing on the
Toxicological experiments using D.galeata population growth rate of the exploiting species.
and G.latipes have provided that @ =1.5 ppb b,np (1)

for D.galeata and LCgs for egg hatch, larval ()= T+hn (£) 5
survival, juvenile survival, adult survival are o

10 ppm, 5 ppm, 3 ppm and 6 ppm, [fz(r) = ___._._._..bfzn= ) +c;, bs and hs are parameters
respectively. The pesticide is not likely to L+ hyn (1) that determine the
affect phytoplanktons considerably. I ; by (1) Isji;(t;cl]r:ttiglng cffects of
tentatively assigned LCs=100 ppm for the r3lt) = 1+hn.(0) T eare the population
phytoplankton. For the environmental bon (t) growth (or decreasing)
exposure data of diazinon, I employed the I,()=—"_ ¢, rateof the predators
time-series measurements in Sakura River 1+ hyn, (2) ;‘g;z?]tthe preys are
(NIES 1995). The exposure data ranged from () = b, 1. () te '

early May to late September (approximately 88 T+hpn () %

150 days). In simulation I used the time-
series exposure data cyclically without taking
into account any phenological changes of ecological parameters except for the environmental
exposure concentrations.

The results of simulations are shown in Fig.6. The populations of the three species cyclically
fluctuated with the pollutant although they approached stable equilibrium densities without the
pollutant. The fluctuations synchronized with the environmental exposure concentration of diazinon.
The direct effect of the pollutant is only effective to the zooplankton because the fish and the
phytoplankton are tolerable to diazinon. Apparently the effects of the pollutant influenced population
dynamics of the fish and the phytoplankton also enormously through interspecific interactions.
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