Approach		Y. Iwasa <i>et al</i> .	Y. Tanaka <i>et al</i> .
Basic model	Author	Y. Iwasa <i>et al</i> .	R. Lande
	Growth	Logistic growth, $r_s X(1 - X/K)$ (suitable for the high-density population)	Exponential growth, $r_i X$ + threshold, K (suitable for the low-density population)
	Environmental variation	Stratonovich-calculus	Ito-calculus $(r_i = r_s + v/2 \text{ and } v = \mathbf{S}_e^2)$
Approximate equation of mean extinction time (<i>T</i>)		$\log T = (1/\text{CV}^2) \log K + C$, where $\text{CV}^2 = \mathbf{s}_e^2/2r_s$ and	$\log T = (2s - 1) \log K + D,$ where $s = r_i/v$ and
		C is terms independent of K	D is terms independent of K
Assumptions for approximate Eqs.		Cf. Hakoyama and Iwasa 2000	Cf. Tanaka and Nakanishi 2000
Risk in terms of mean extinction time		$\Delta \log T$	$\Delta T/T$
r and K under chemical stress		$ \begin{array}{l} r_s \qquad r_s' \ (=r_s - \boldsymbol{d}), \\ K \qquad K' \ (=K - K \ \boldsymbol{d} \ / r_s) \end{array} $	r_i r_i ', K does not change.
$\Delta \log T$ due to chemical exposure		$\frac{\mathbf{K} \mathbf{K} (= \mathbf{K} - \mathbf{K} \mathbf{d} / r_s)}{\Delta \log T(\mathbf{d}) = -\mathbf{d} \log T(\mathbf{d} = 0) / r_s}$	$\Delta \log T \approx 2\Delta s \log \overline{K}$
Effect of chemicals		r_s is derived from Leslie Matrix (life table) which includes the effect of toxic chemicals	r_i is derived from Leslie Matrix (life table) which includes the effect of toxic chemical
Approximate Equation for estimating the effect of chemicals		$\boldsymbol{d} = r_s - r_s' = r_{max}g(x/\boldsymbol{a})^{\boldsymbol{b}}$	$r_i(x) = r_i(0) [1 - (x/\alpha)^2]$ log $\alpha = c + b \log\{LC50\}, b=0.843, c=1.562$
Habitat loss ($\Delta K / K$) which is equivalent to MET Risk		$\Delta \log T \approx (1/\mathrm{CV}^2) \Delta \log K$	$\Delta \log K \approx \Delta s \log \overline{K} / (\overline{s} + \Delta s - 0.5)$
Example of $(\Delta K / K)$		Herring gull (<i>Larus argentatus</i>) in Long island, NY. sparrowhawk (<i>Accipiter nisus</i>) in Eastern England, Japanese crucian carp (Carassius auratus subsp.) in Lake Biwa	Daphnia

Table A2. Comparison of Approaches by Iwasa et al. and Tanaka et al.

See the text for abbreviations.