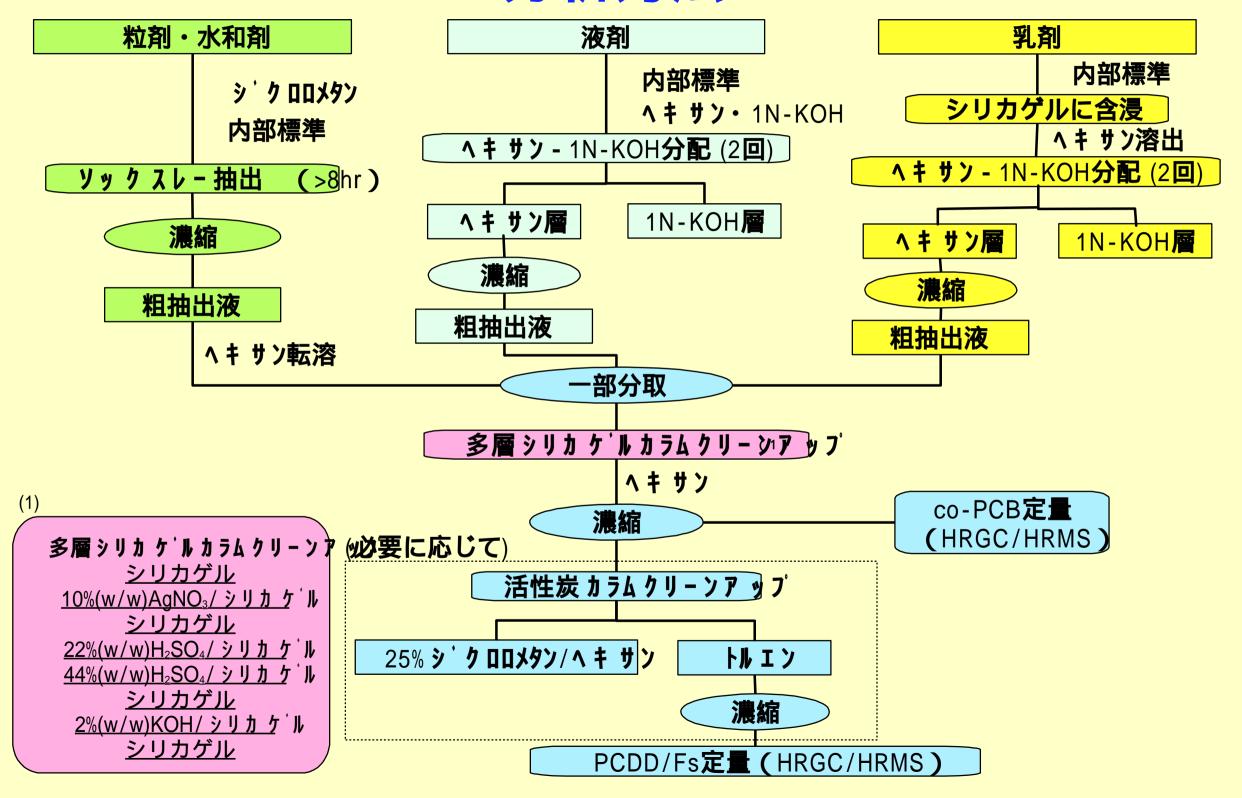
日本の農薬中のダイオキシン類

益永茂樹·中西準子

横浜国立大学 環境科学研究センター & 科学技術振興事業団 CREST


はじめに

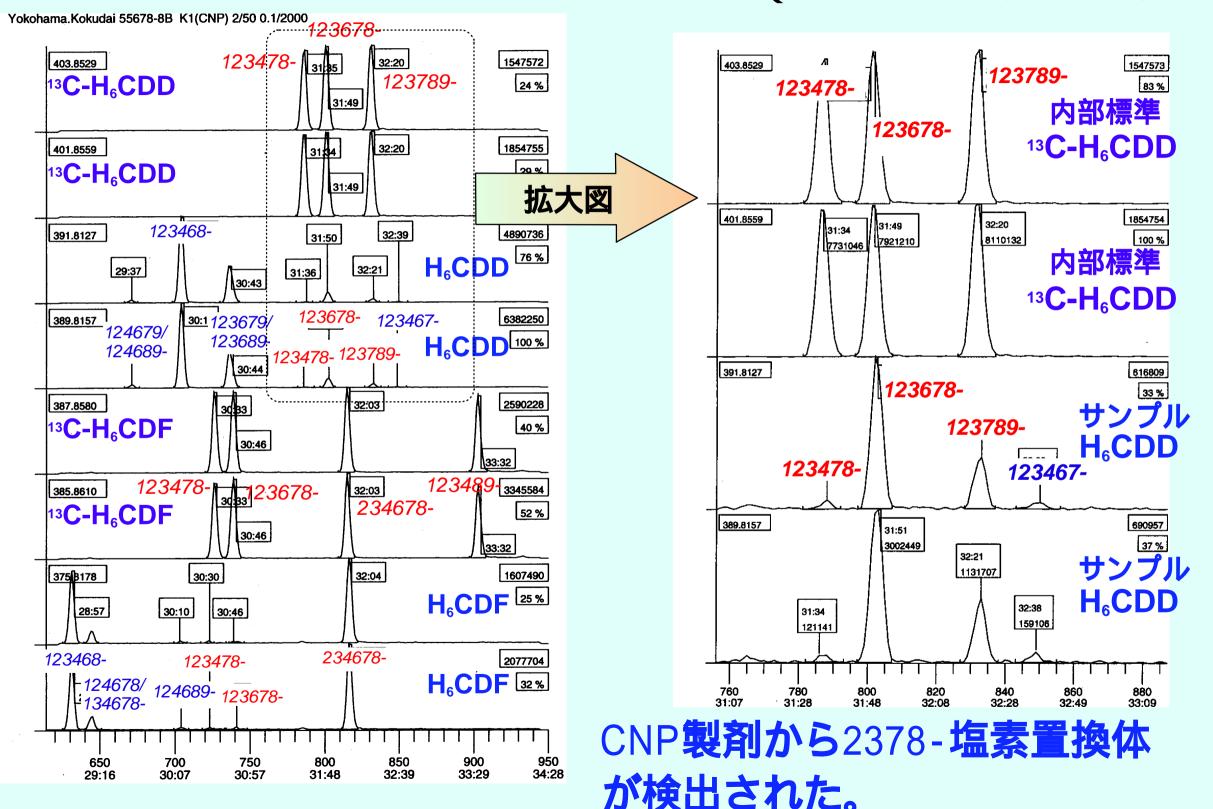
現在の水系や農地のダイオキシン汚染の起源を調べると、過去に使われた農薬の不純物による寄与が大きい。著者らの東京湾の表層底質の調査では、農薬の寄与はダイオキシン総量で57%, I-TEQで32%と推定された。

しかし、日本で使われた農薬中のダイオキシン類に関する報告はあまりに少なく,現在のダイオキシン汚染の原因の究明と対策の立案の上で更なる情報の収集が必要である。

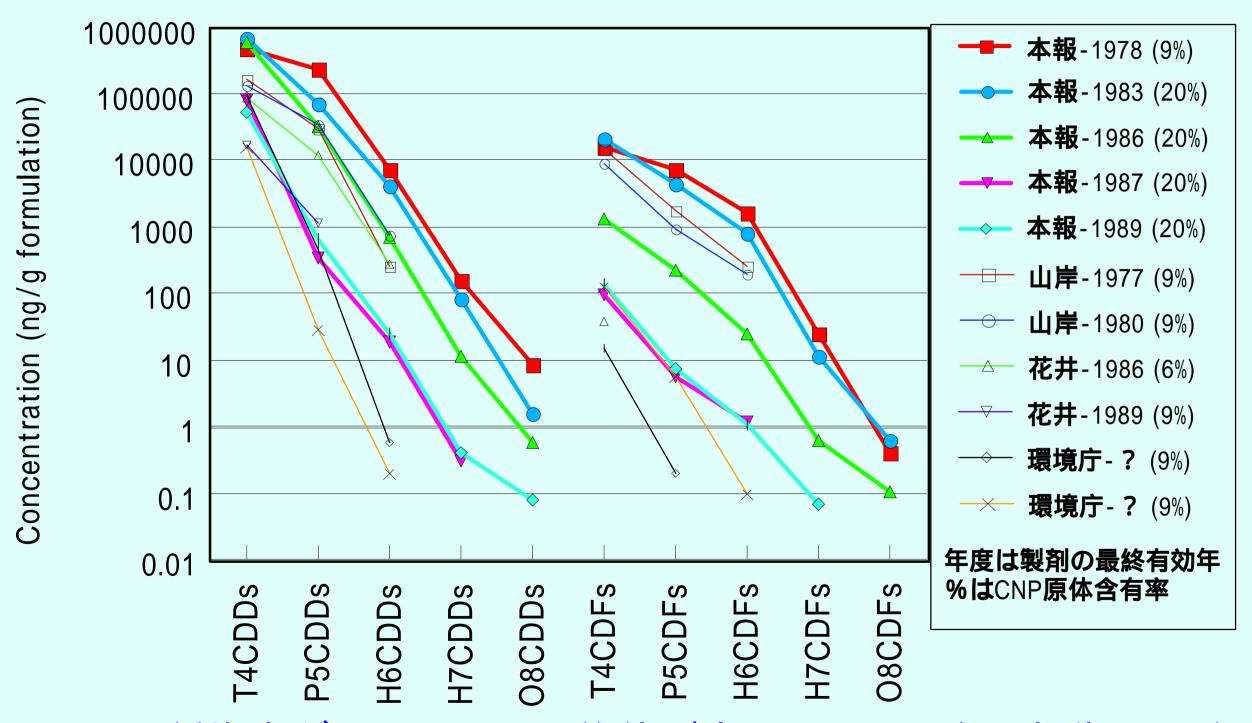
そこで、農家に保管されていた過去の農薬を集めた。分析した のは,全てオリジナルの包装の中に残されていたものである。

分析方法

分析した農薬 (15サンプル)

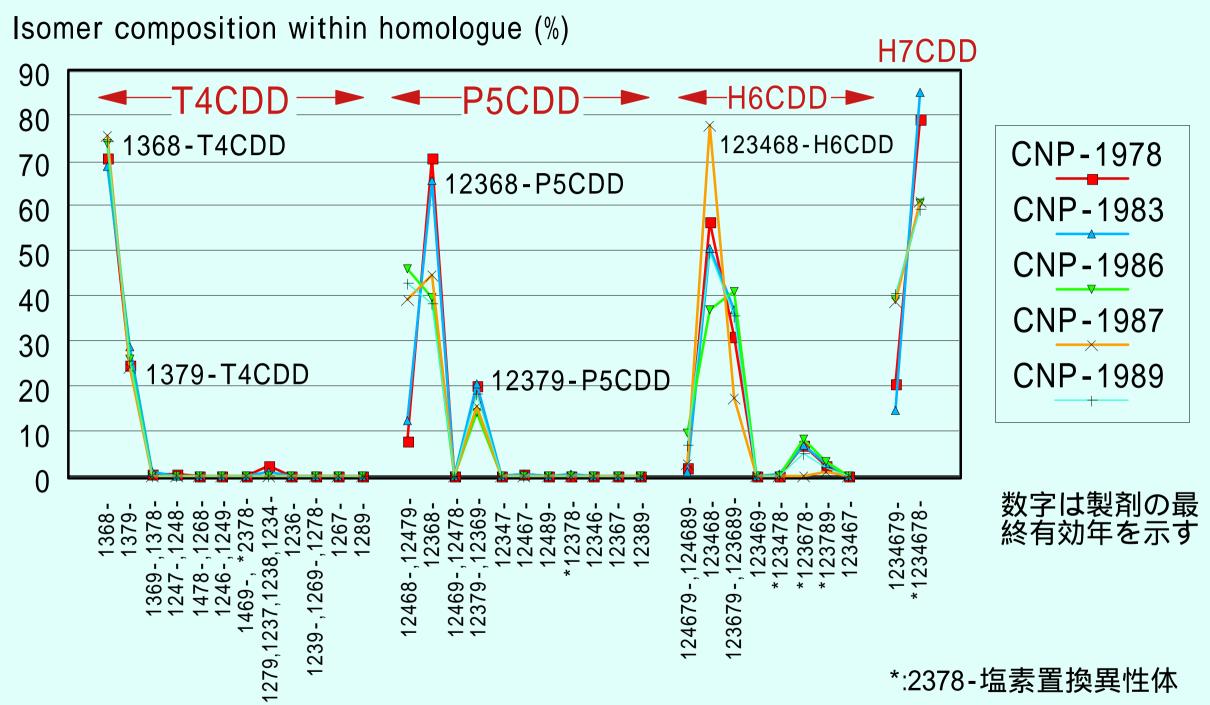

略号-有効期限	農薬名	原体	含有率(%)
PCP-1967	P C P 粒剤 2 5	ヘンタクロロフェノールナトリウム一水化物	25
PCP-1970	パムコン粒剤 PCP・MCP 除草剤	ヘンタクロロフェノールナトリウム―水化物 2-メチル-4-クロロフェノキシ酢酸アリルエ	13.4
PCP-1971	パムコン粒剤 PCP/MCP 除草剤	へ ンタクロロフェノールナトリウム―水化物 2-メチル-4-クロロフェノキシ酢酸アリルエ	13.4 ステル 1.2
PCP- ?	P C P 粒剤 2 5	ペンタクロロフェノール	25
CNP-1978	MO 粒剤 -9	2,4,6-トリクロルフェニル-4'-ニトロフェニルエ	- テル 9.0
CNP-1983	MO乳剤	2,4,6-トリクロルフェニル-4'-ニトロフェニルエ	- テル20
CNP-1986	MO乳剤	2,4,6-トリクロルフェニル-4'-ニトロフェニルエ	- テル 20
CNP-1987	MO乳剤	2,4,6-トリクロルフェニル-4'-ニトロフェニルエ	- テル20
CNP-1989	MO乳剤	2,4,6-トリクロルフェニル-4'-ニトロフェニルエ	- テル20
NIP-1969	ニップ粒剤	2,4-シ・クロルフェニル-4-ニトロフェニルエー	テル 7.0
T P N-1973	ダコニール	テトラクロロ-イソ-フタロニトリル	75
TPN-1993	ダコレート水和剤 TPN/ペノミル	テトラクロロ-イソ-フタロニトリル ベノミル	50 20
M C P - 1974	水中MCP 粒状除草剤	2-メチル-4-クロロフェノキシ酢酸	1 .2
2,4- D -1996	2,4-PA 液剤 ア ミン塩	2,4-シ クロルフェノキ シ 酢酸 シ メチルアミン	/塩 49.5
2,4- D -1998	2,4-PA 液剤 ア ミン塩	2,4- ジクロルフェノキ シ 酢酸 ジメチル ア ミン	/塩 49.5

				表日	本の	農薬製剤	削中の <i>ダ</i>	イオキシ	ン不純物	勿含有量						
原体名		PCP	PCP	PCP	PCP	CNP	CNP	CNP	CNP	CNP	NIP**	TPN**	TPN**	MCP**	2,4-D	2,4-D
最終有効期限		1967	1970	1971	不明	1978	1983	1986	1987	1989	1969	1973	1993	1974	1996	1998
原体含有量		25%	13%	13%	25%	9%	20%	20%	20%	20%	7%	75%	50%	1.2%	50%	50%
製剤当たりの濃度																
2378-T4CDD	ng/g	<50	<0.1	<1	2.5	ND (1.5)*	ND (14)*	ND (1.7)*	ND (0.38)*	ND (0.59)*	0.083	<0.01	<0.01	0.002	<0.01	<0.01
12378-P5CDD	ng/g	<50	<0.1	<1	12	880	340	1.9	0.62	0.27	0.064	< 0.01	<0.01	< 0.002	< 0.01	<0.01
123478-H6CDD	ng/g	<50	1.5	7.3	160	25	28	< 0.02	0.023	< 0.02	< 0.02	< 0.01	< 0.01	< 0.005	< 0.02	< 0.02
123678-H6CDD	ng/g	860	2.6	140	8.3	530	300	65	0.54	1.4	0.027	< 0.01	< 0.01	< 0.005	< 0.02	< 0.02
123789-H6CDD	ng/g	62	0.39	6.3	8.6	180	130	24	0.23	0.52	< 0.02	< 0.01	< 0.01	< 0.005	< 0.02	< 0.02
1234678-H7CDD	ng/g	41,000	200	2,900	410	130	75	7.2	0.19	0.25	0.04	0.03	0.035	0.009	< 0.02	< 0.02
O8CDD	ng/g	2,800,000	22,000	9,600	740	9.2	1.6	0.61	<0.05	0.083	0.14	0.21	0.2	0.097	0.079	<0.05
2378-T4CDF	ng/g	<50	<0.1	<1	<0.1	11	<0.1	0.1	0.015	0.023	0.33	0.01	<0.01	< 0.002	<0.01	<0.01
12378-P5CDF	ng/g	<50	1.6	15	9.9	<0.1	<0.1	<0.01	0.038	0.078	0.054	0.011	<0.01	< 0.002	<0.01	<0.01
23478-P5CDF	ng/g	<50	<0.1	1.3	3.4	69	<0.1	<0.01	0.04	0.029	0.012	<0.01	<0.01	< 0.002	<0.01	<0.01
123478-H6CDF	ng/g	210	73	99	11	4.3	<0.1	< 0.02	< 0.02	< 0.02	< 0.02	0.01	<0.01	< 0.005	< 0.02	< 0.02
123678-H6CDF	ng/g	130	70	18	40	14	<0.1	5.5	0.027	0.16	< 0.02	<0.01	<0.01	<0.005	< 0.02	< 0.02
234678-H6CDF	ng/g	220	28	22	26	800	250	2.8	0.27	0.28	< 0.02	<0.01	<0.01	< 0.005	< 0.02	< 0.02
123789-H6CDF	ng/g	120	<0.1	25	13	2	<0.1	<0.02	< 0.02	< 0.02	< 0.02	<0.01	<0.01	<0.005	< 0.02	< 0.02
1234678-H7CDF	ng/g	2,700	290	890	68	19	9.8	0.42	< 0.02	0.024	< 0.02	0.14	0.038	0.007	< 0.02	<0.02
1234789-H7CDF	ng/g	600	190	200	16	0.24	0.2	0.024	< 0.02	< 0.02	< 0.02	<0.01	<0.01	< 0.005	< 0.02	<0.02
O8CDF	ng/g	35,000	2,900	3,000	100	0.41	0.63	0.11	< 0.05	< 0.05	<0.05	24	2.7	<0.01	<0.05	<0.05
I-TEQ (ND=0)	ngTEQ/g	3400	49_	86	43		240 (260)*		0.44 (0.82)*		0.16	0.028	0.0036	0.0023	<0.005	<0.005
WHO-TEQ (ND=0)	ngTEQ/g	890	27	74	48		410 (430)*	12 (13)*	0.75 (1.1)*	0.53 (1.1)*	0.19	0.0067	0.0010	0.0022	<0.005	<0.005
T4CDDs	ng/g	3,400	550	12	7.2	520,000	730,000	650,000	87,000	55,000	320	0.45	0.13	3.8	0.014	0.21
P5CDDs	ng/g	610	26	<1	160	250,000	73,000	33,000	360	700	3.2	0.16	0.085	0.16	<0.01	<0.01
H6CDDs	ng/g	1,700	9.1	290	220	7,400	4,300	750	19	26	0.26	0.099	0.075	0.014	< 0.02	< 0.02
H7CDDs	ng/g	48,000	240	4,000	450	160	88	12	0.31	0.42	0.082	0.063	0.062	0.016	< 0.02	<0.02
O8CDD	ng/g	2,800,000	22,000	9,600	740	9.2	1.6	0.61	< 0.05	0.083	0.14	0.21	0.20	0.097	0.079	<0.05
Total PCDDs	ng/g	2,900,000	23,000	14,000	1,600	780,000	810,000	680,000	87,000	56,000	320	0.98	0.55	4.1	0.093	0.21
T4CDFs	ng/g	170	<0.1	11	<0.1	17,000	22,000	1,400	100	140	850	0.27	0.13	0.099	0.95	0.016
P5CDFs	ng/g	<50	15	40	13	7,600	4,700	240	5.8	7.5	8.1	0.12	0.082	0.030	0.78	<0.01
H6CDFs	ng/g	2,900	440	1,700	290	1,700	820	26	1.2	1.1	0.11	0.051	0.051	0.016	0.015	<0.02
H7CDFs	ng/g	17,000	1,700	5,100	190	26	12	0.65	< 0.02	0.072	0.034	0.17	0.060	0.015	0.031	0.023
O8CDF	ng/g	35,000	2,900	3,000	100	0.41	0.63	0.11	< 0.05	< 0.05	<0.05	24	2.7	<0.01	<0.05	<0.05
Total PCDFs	ng/g	55,000	5,100	9,900	590	26,000	28,000	1,700	110	150	860	25	3.0	0.16	1.8	0.039
Total PCDD/DFs	ng/g	3,000,000	28,000	24,000	2,200	810,000	840,000	680,000	87,000	56,000	1200	26	3.6	4.2	1.9	0.25
原体当たりの濃度																
I-TEQ (ND=0)	ngTEQ/g	14,000	370	640	170	7,000	1,200	54 (62)*	2.2 (4.1)*	2.0 (4.9)*	2.3	0.038	0.0073	0.2	<0.01	<0.01
WHO-TEQ (ND=0)	ngTEQ/g	3,500	200	550	190	12,000	2,100	59 (67)*	3.8 (5.7)*	2.6 (5.5)*	2.7	0.0089	0.0020	0.18	<0.01	<0.01
Total PCDDs	ng/g	11,000,000	170,000	100,000	6,400	8,700,000	4,100,000	3,400,000	440,000	280,000	4,600	1.3	1.1	340	0.19	0.42
Total PCDFs	ng/g	220,000	37,000	73,000	2,400	290,000	140,000	8,000	550	750	12,000	33	6.0	13	3.6	0.079
Total PCDD/DFs	ng/g	11,000,000	•				4,200,000		440,000		17,000	34	7.2	350	3.8	0.50

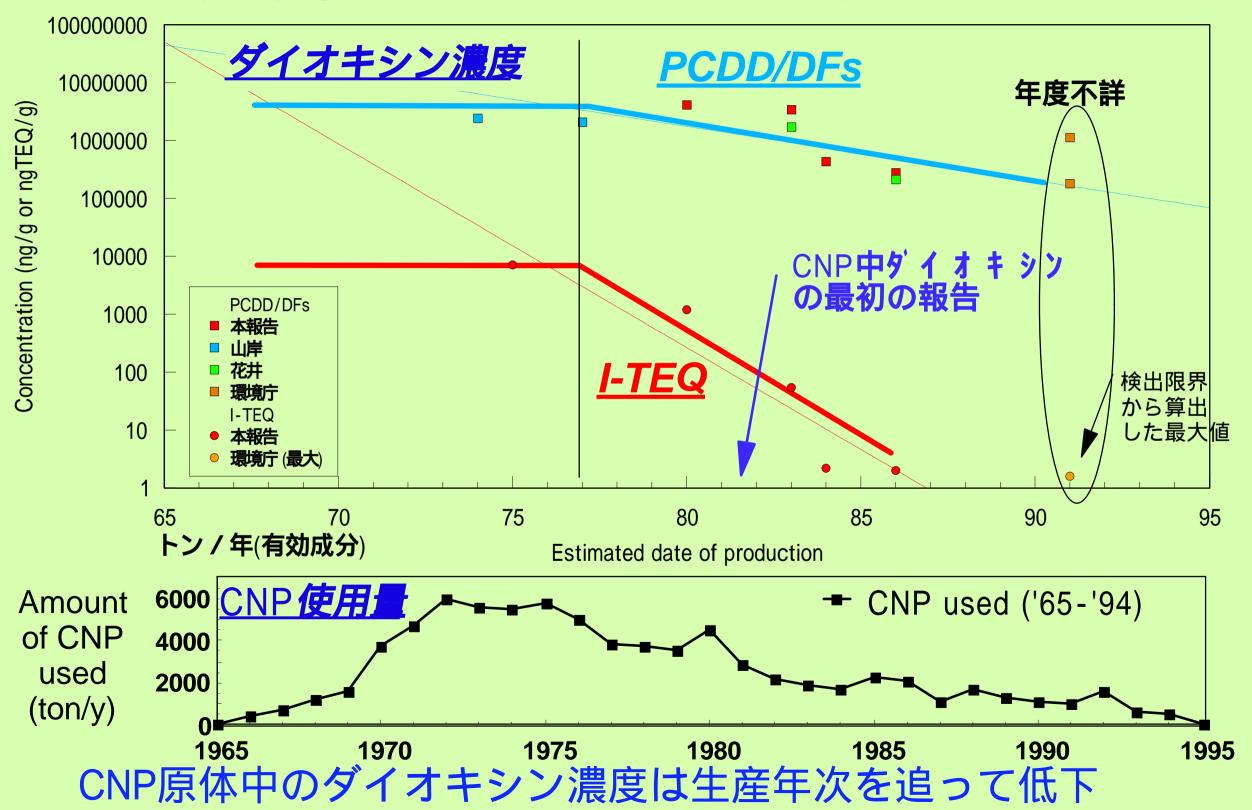

^{* 2378-}T4CDD は他の大きな異性体ピークの裾に乗っており定量が不正確なため、ここでは ND として扱い、TEQ に含めないことにした。 ()内はあえて定量した場合の濃度とTEQ。

^{**} TNP-1973、TPN-1993、NIP-1969、MCP-1974 は再分析の結果を踏まえて、要旨集の値を訂正した。なお、その他の農薬に関しては再分析の結果、分析値に大きな違いのないことを確認した。

CNP製剤のGC-MSクロマトグラスNP-1978のH。CDDとH。CDF)



CNP製剤中ダイオキシン類の同族体別濃度


CNPに低塩素ダイオキシン同族体が多いことは既存の報告と一致

CNP製剤中ダイオキシンの異性体組成

非常に高濃度の異性体がある一方、2378-塩素置換体も検出した

CNP原体中ダイオキシン不純物濃度と使用量の変遷

わが国における農薬由来ダイオキシン類の総放出量

<u>CNP</u>: 原体当たりのダイオキシン濃度が生産年に依存して変遷したる仮定(図参照:1976年以前は1976年の推定値を用いる)して計算すると、PCDD/Fs総量として約200 ton、I-TEQとして約200 kgが日本の農地に放出されたことになる。

<u>PCP</u>: ダイオキシン濃度は製剤により大きく異なり、年代による傾向見られない。本報告の算術平均値はPCDD/Fsで3000 μ g/g原体、I-TEQで3700 ng I-TEQ/g原体、外国の報告例を加えた平均は、それぞれ750 μ g/g (n=33)、2300 ng I-TEQ/g (n=9)である。後者の数値を用いてPCP由来のダイオキシン放出量を推算すると、PCDD/Fs総量で約120 ton、I-TEQで約400 kgとなる。

これらの値は、近年の燃焼由来の放出量と比較して無視できない量である。また、ベトナムに散布された枯葉剤由来の2378-TCDD放出推定量 168~550 kg (米空軍~A. H. Westing推定)に匹敵する。他の農薬からの放出量はこれらに比べて僅かと推定される。

まとめ

わが国において過去使用された農薬の内、PCPとCNP製剤にはダイキシン不純物含量が非常に高いものがあったことを確認した。またCNP製剤も古い物には2,3,7,8-塩素置換異性体が含まれていたことを見つけた。

過去の農薬利用に伴ったダイオキシン類の環境放出量は多大であり、それらが現在もまだ水域や土壌におけるダイオキシン汚染の主な原因の一つになっていると考えられる。

ダイオキシン対策は現在の主たる発生源である燃焼プロセスばかが注目されている。しかし、既に有る汚染からの寄与は無視できず、 策の割に効果が上がらない可能性がある。汚染の現状に立脚した総合的戦略の立案が必要である。

訂正

本年初頭に本報告の農薬中ダイオキシンの分析結果を横浜おけるワークショップで報告した。予期以上の注目を集めたこともあって、回、確認のため改めて試料の再分析を行った。その結果、TPN(1973と1993)、NIP、および、MCPの値は分析操作に問題があったことが影明したので、このポスターでは訂正した。本討論会の講演要旨集の表も訂正していただきたい。特にTPNは先の報告値が過大であったこともあり、関係各位には多大なご迷惑をおかけしたことをここに深くおびする。

謝辞

本研究は科学技術振興事業団CRESTの研究支援を受けた。また、 分析では島津テクノリサーチ㈱の協力を得たので、ここに謝意を表 ます。