疫学研究の進め方 Conduct of Epidelimologic Study:

集団レベルの健康影響

曝露、疾病それぞれの分布、状況を調べ、両者をつなぎ合わせる

疫学研究のデザイン(Study design of Epidemiologic study. どのように健康影響の有無や程度を調べるか?)

- ·地域相関研究(Ecological Study)
- ·断面研究(Cross-sectional Study, Survey)
- ・コホート研究 (Cohort Study)
- ・ケース・コントロール研究 (Case-Control Study)
 - cf. 前向き研究(Prospective Study)、後向き研究(Retrospective Study) 臨床試験(Clinical Trial)、無作為化比較試験(Randomized Controlled Trial)

地域相関研究 (Ecological study)

分析(観察)の単位が個人ではなく、<u>集団</u> (ex.「横浜市」という「1人の人」) 検証というよりも仮説設定

A study in which the units of analysis are population or groups rather than individuals. for generating hypothesis

cf. 生態学的誤謬 (Ecological fallacy)

断面研究 (Cross-sectional study)

ある一時点で調べられた個々人の状態を記述

(一般的に) 因果関係は議論できない

仮説設定的な研究

わが国では、このデザインによる環境疫学研究は多い

ex. 東京都:沿道汚染と呼吸器症状調査

A study that examines the relationship between diseases (or other health-related characteristics) and other variables of interest as they exist in a defined population at one particular time

コホート研究 (Cohort study)

Prospective (or retrospective) follow-up study

- 1. 時間による分類
 - ①前向きコホート研究 (Prospective Cohort Study)
 - ②後向きコホート研究 (Retrospective Cohort Study, Historical Cohort Study)
- 2. デザインによる分類
 - ①. 閉じたコホート研究 (Closed Cohort Study, Fixed Cohort Study)
 - ②. 開いたコホート研究 (Open Cohort Study, Dynamic Cohort Study)
- cf. リスク集団 (Population at Risk)

無作為化比較試験(Randomized Control Study)

ケース・コントロール研究 (Case-control study)

ケース群とコントロール群で曝露要因を比較

It includes people with a disease (or other outcome variable) of interest and a suitable control (comparison or reference) group of people unaffected by the disease or outcome variables. The study compares the occurrence of the possible cause in cases and in controls.

主に後向き研究

→関心のあるのは過去の曝露 (曝露評価に問題点あり)

オッズ比 (Odds ratio) による検討

マッチング (Matching)

cf. Nested case-control study (コホート内ケース・コントロール研究)

因果関係? Causal relationship

単なる関係(統計的な関連性)と因果関係(原因と結果) 観察研究の中で、どのような場合に因果関係ありと判断するか?

因果論の系譜

Kochの3 (4) 原則 Koch's postulates

Hill の 9 基準 (視点) Hill's considerations for causal inference

← Surgeon General (米国公衆衛生局長諮問委員会) の5基準

関連の一致性 (Consistency)

関連の強固性(Strength)

関連の特異性 (Specificity)

関連の時間性 (Temporality)

関連の整合性 (Coherence)

生物学的勾配(Biological gradient)

生物学的説得性(Biological plausibility)

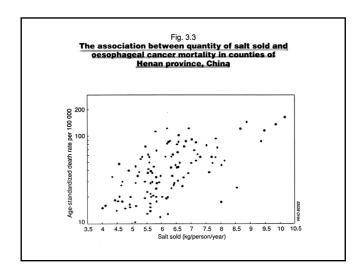
実験的証左(Experimental evidence)

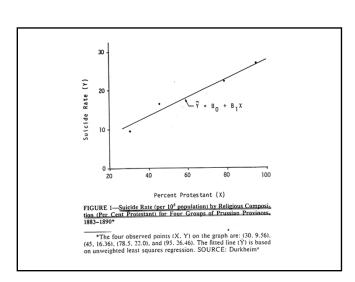
類似性(Analogy)

Component Cause

Web of Causation

ポッパー(反証主義)と蓋然性論


疫学研究のデザイン


Study design of Epidemiologic study

- 断面研究(横断研究、Cross-sectional Study)
- コホート研究(主に前向き研究、Cohort Study)
 - cf.臨床試験(無作為化比較試験、Clinical Trial, Randomized Controlled Trial)
- ケース・コントロール研究(主に後向き研究、 Case-Control Study)
 - 今日、もっとも理論的な展開が進んでいる
 - cf. 地域相関研究(Ecological Study)

地域相関研究(Ecological study)

- 分析の単位が個人ではなく、集団 A study in which the units of analysis are population or groups rather than individuals.
- 仮説設定 for generating hypothesis
- 容易に実施可(多くの場で実施されている)
- 曝露要因と疾病の同時分布は不明
 - ◆集団レベルの変数間で観察された関係は、個人レベルでの関係を必ずしも表していない
 - ◆因果関係の議論はできない
 - ◆ 交絡要因を制御できない
 - 二〉生態学的誤謬(Ecological fallacy)

比較 Comparison

大気汚染レベルが高いA市の方が、濃度 が低いB市よりも死亡率が高い Air pollution: City A > City B

Mortality: City A > City B

ゆえに大気汚染は死亡の原因である
Causal relationship between air pollution and mortality?

本当???

同一地区内でも濃度には差がある A地区:高濃度域に住む人が60%

B地区: (同程度の)高濃度域が20%存在

⇒ 平均濃度はA地区の方が高い

両地区の死亡者はすべて低濃度域(あるいは高 濃度域から発生(両地区の死亡者数は異なる)

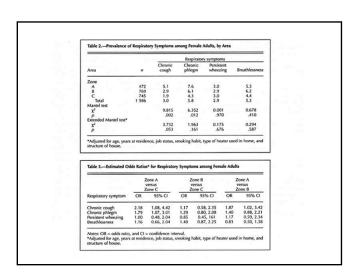
⇒ 大気汚染は死亡の原因???

地域内の濃度が均一だとしても、A地区の方がB地区よりも平均年齢が(かなり)高かったとしたら? あるいは喫煙率が高かったとしたら?

Ecological Studyのデータ構造 (j番目の群について)

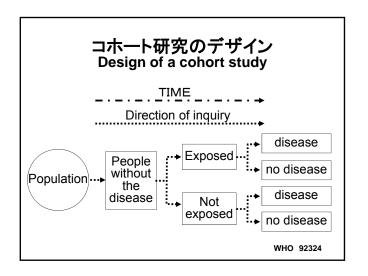
	疾病あり	疾病なし	
曝露あり	?	?	N ₁
曝露なし	?	?	N _o
	m_1	m_o	N

断面研究(サーベイ)


Cross-sectional study (Survey)

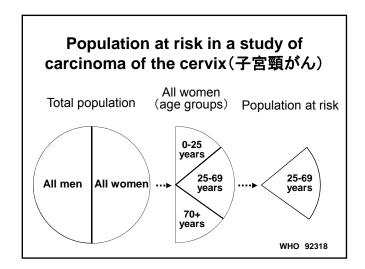
ある一時点で調べられた個々人の状態を記述(有病割合)

A study that examines the relationship between diseases (or other health-related characteristics) and other variables of interest as they exist in a defined population at one particular time


- 母集団全体に対して行うには費用がかかりすぎるような場合
- 比較的容易に実施可能
- 因果関係の方向性に関しては何の情報も持たない

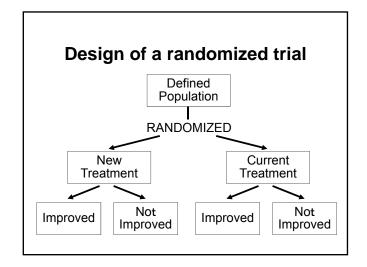
コホート研究(Cohort study)

- 前向き、あるいは後向きの追跡調査 Prospective (or retrospective) follow-up study
- 曝露群と非曝露群で疾病発生を比較
- ●疾病の自然史を把握できる
- ●長期にわたる追跡、さらに非常に多くの対象者数が必要



リスク集団 (Population at risk)

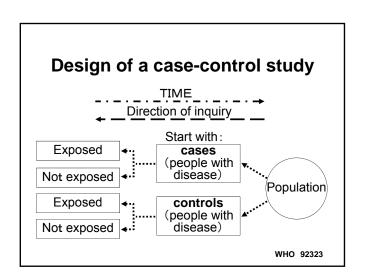
● 研究目的とする疾病を発症する可能性のある集団

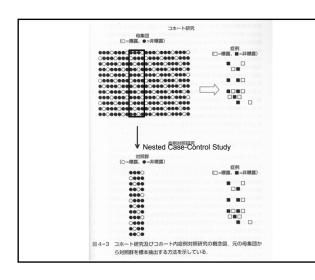

The people who are susceptible to a given disease → コホート研究の研究対象

- 例(リスク集団ではない)
 - ◆ 肺がんに関するコホート研究を行う場合、すでに肺がん にかかっている人はリスク集団ではない
 - ◆ 前立腺癌に関する調査を行う場合、女性はリスク集団ではない
 - ◆ 子宮がんに関するコホート研究を行う場合、子宮を切除 した女性はリスク集団ではない

無作為化比較試験 (Randomized Control Test)

- 追跡調査のGold Standard(野外実験研究)
- 無作為に要因を割り付け、比較する Subjects in the study population are randomly allocated to intervention and control groups, and the results are assessed by comparing outcomes.
- 使用できる局面は限られている(対象者に とって有益なものでなければならない)
- 環境の場面ではほとんど不可能?




ケース・コントロール研究 (Case-control study)

● ケース群とコントロール群で曝露要因を比較

It includes people with a disease (or other outcome variable) of interest and a suitable control (comparison or reference) group of people unaffected by the disease or outcome variables. The study compares the occurrence of the possible cause in cases and in controls.

- コホート研究より劣る?
- コホートの中でのケース・コントロール研究(母集団を考慮)
 - →Nested case-control study, Case-cohort study

コホート研究 Cohort study

- 予測的側面(まだ結果が得られたケースがない)をも つ場合
- 過去の曝露を得ることができない場合

薬の効果、災害・事故の影響、携帯電話など

ケース・コントロール研究 Case-control study

- すでに結果がでていて、今後起こりえないような場合
- 要因がなんであるか、検討がつかないような場合

食中毒、サリドマイドなど突発的に生じたもの、ALS (筋萎縮性側索硬化症)などの難病など

各研究デザインの特徴

	ケース・コントロ	コホート研究
	ール研究	
対象数	の小さくて可	●多人数必要
調査期間	の短い	●長い
費用、労力	<i>O小さい</i>	●大きい
稀少疾患の研究	<i>〇可能</i>	●ほぼ不可能
人口移動の大きい 集団	<i>〇実施可能</i>	●実施困難
曝露に関する情報 の信頼性	●よくない	0\$11
<i>発生率</i>	●算出不可	<i>〇算出可能</i>
他疾患、他要因の評	複数の要因を同時	複数疾患の発生に及
価	/二評価可	ぼす影響も評価可

Applications of Different Observational Study Designs a

Objective	Ecological	Cross- sectional	Case-control	Cohort
Investigation of rare disease	++++	-	+++++	-
Investigation of rare cause	++	-	-	++++
Testing multiple effects of cause	+	++	-	+++++
Study of multiple exposures and determinants	++	++	++++	+++
Measurements of time relationship	++	-	+ b	++++
Direct measurement of incidence	-	-	+ c	+++++
Investigation of long latent periods	-	-	+++	-

- a +...++++ indicates the general degree of suitability; there are exceptions
- not suitability
 b If prospective.
 c If population-based.

Bonita et al. Basic Epidemiology

因果関係?

Causal relationship

- 今日、疫学の分野で、実験科学的な(厳密 な)意味での因果関係を見いだすことは不 可能であろう。
- ●それでも、「十分因果関係あり(ある程度の (?)科学性を保ち、かつ公衆衛生上の必 要性を十分満たす)」という判断を下すに は?

因果関係?

Causal relationship

- ●科学的因果関係 Scientifically
- ●政策的因果関係 Politically
- ●法的因果関係 Legally
 - →法的因果関係(裁判での因果関係)の考え方 は、単に科学的センスだけではとらえにくい

Henle-Kochの4原則

Henle-Koch's postulates

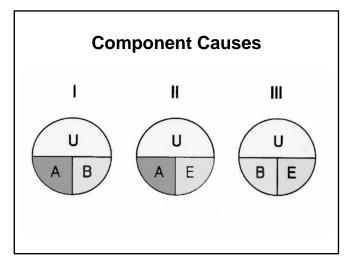
その病原体が当該の感染症患者から分離検出されること

The agent must be shown to be present in every case of the disease by isolation in pure culture.

- その病原体は他の疾病患者には見いだされないこと The agent must not be found in cases of other disease.
- 患者から分離培養された病原体が実験動物に同一 疾患を発生させること

Once isolated, the agent must be capable of reproducing the disease in experimental animals.

当該罹患動物から再び同一の病原体が分離されること


The agent must be recovered from the experimental disease produced.

Surgeon generalによる5基準

- ●関連の特異性 (specificity)
- ●関連の強さ (Strength, 量・反応関係)
- ●一貫性 (Consistency)
- ●整合性 (Biological plausibility)
- ●時間的関連 (Temporality)

Hillの9基準

- Strength
- Plausibility
- Consistency
- Coherence
- Specificity
- Experiment
- Temporality
- Analogy
- Biological gradient

Black Box Risk Factor 発症、死亡

因果関係

- 今日の科学レベルでは、厳密な意味での 因果関係の立証は不可能???
- 結局最後に問題視されるのは
 - ◆時間的要素?
 - ◆ある程度の特異性?