NOECからEC10への代替は 95%の種を保護できる濃度に影響を及ぼすか?

E-mail: yuichiwsk@gmail.com

○岩崎雄一(東洋大学 生命環境科学研究センター),小谷健輔(横浜国立大学 大学院環境情報学府) 柏田祥策(東洋大学 生命環境科学研究センター),益永茂樹(横浜国立大学 大学院環境情報研究院)

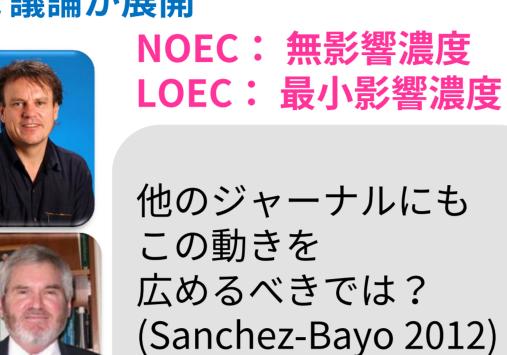
背景

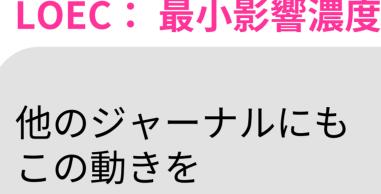
種の感受性分布(Species sensitivity distribution:SSD)は 水質環境基準などの"安全"濃度の推定に広く用いられている

- 種の感受性分布の推定には無影響濃度(NOEC)がよく用いられる

仮説検定(NOEC/LOEC)の使用を禁止しよう

(Landis & Chapman 2011)




NOECやECxの使用について議論が展開

より適切な統計解析を用いるという意味では同意 ただし,完全な禁止には同意できない (Fox 2012)

データによっては仮説検定に基づく解析に 頼らざるを得ない場合もある (Green et al 2012)

ECxのxを決めるには個体群レベルに波及する影響の 大きさを考慮しましょうよ (Iwasaki & Hanson 2013)

写真は各研究者の ウェブサイトより入手

目的

NOECかEC10かの選択は 95%の種を保護できる濃度の推定に影響を及ぼすか?

本研究では、以下の3つを評価した。

- NOECおよびLOECにおける影響の大きさ
- NOECとEC10(ECxの代表として使用)の関係
- NOECかEC10かの選択が種の感受性分布から推定される 95%の種を保護できる濃度(HC5: Hazardous concentration for 5% of the species) に影響するか?

方法

1. NOECを用いて種の感受性分布を推定した文献をレビューする

対象とした5つの化学物質

亜鉛,鉛,ノニルフェノール,3,4-ジクロロアニリン(3,4-DCA),リンデン

- 2. 個々の毒性試験の生データを収集する
- 3. 個々の毒性試験データを用いて濃度-反応関係を推定する

濃度反応関係の推定には,Rのパッケージ"drc"を用いた

各毒性試験データに9つの統計モデルを当てはめ(2~4パラメータのlog-logistic及び Weibull-1&2モデル),赤池の情報量規準(AIC)により最良モデルを選択した 得られた最良モデルを用いて

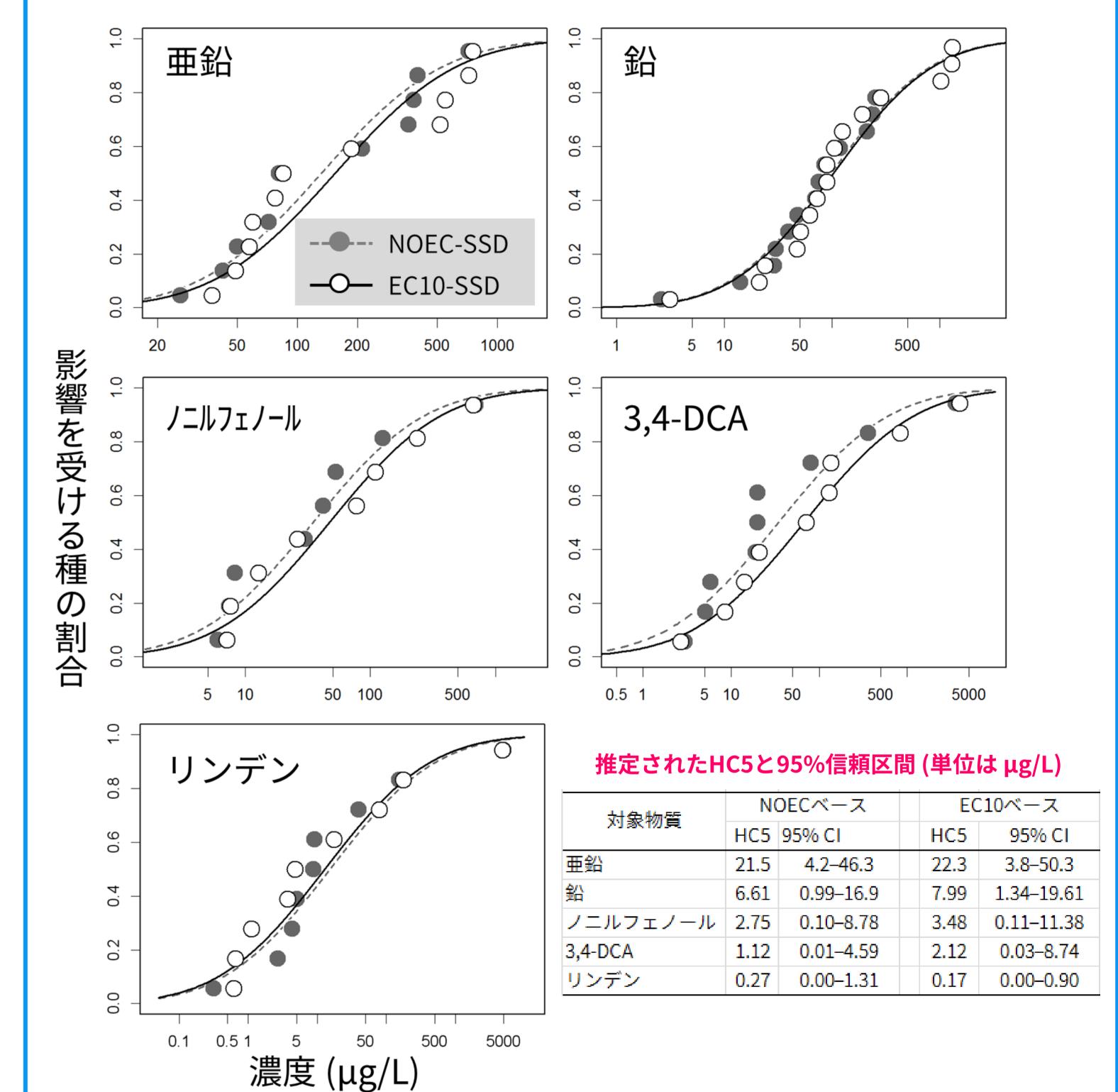
- ① 10%影響濃度(EC10: 10% effect concentration)
- ② NOECとLOECにおける減少割合を推定した

4.5つの化学物質についてHC5とその95%信頼区間を推定する

推定したNOECとEC10をそれぞれ対数正規分布に当てはめた(SSDを推定) 1種に2つ以上のNOECまたはEC10があった場合は,それらの幾何平均値を用いた

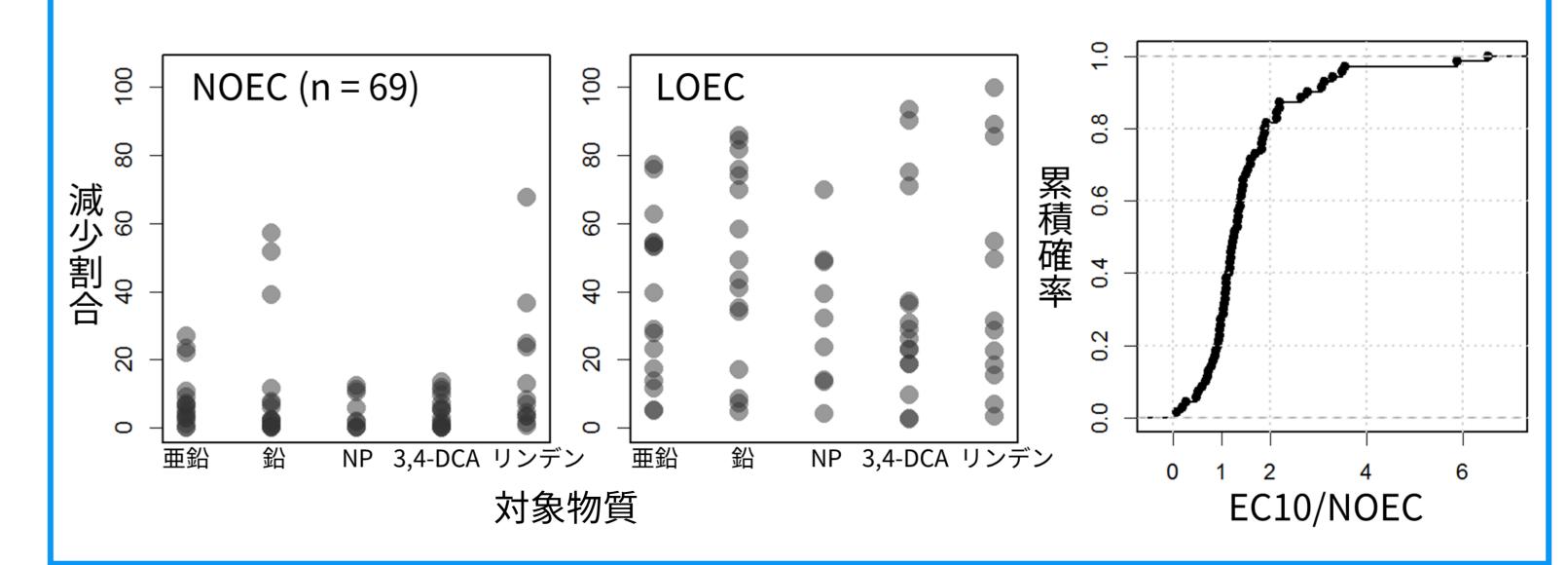
データの詳細

- •主要なエンドポイントは,生存 (34%), 繁殖 (23%),成長 (18%),個体群増殖 (14%)であった
- •他のエンドポイントは,魚類の奇形, 藻類の生物量,昆虫の羽化,孵化まで の時間,生存時間であった
- ・各物質について8~16種の毒性データが 得られ,魚類 (47%),甲殻類 (28%),藻 類 (9%)がその多くを占めていた


エンドポイント	亜鉛	鉛	ノニルフェノール	3, 4-DCA	リンテ゛ン
NOECの数	<u>17</u>	<u>19</u>	<u>9</u>	<u>16</u>	<u>13</u>
生存	5	9	4	3	4
繁殖	8	2	3	4	0
成長	2	0	1	5	5
個体群増殖	1	3	0	4	2
その他	1	5	1	0	2
グループ	亜鉛	鉛	ノニルフェノール	3, 4-DCA	リンテ゛ン
グループ 生物種の数	亜鉛 <u>11</u>	鉛 <u>16</u>	ノニルフェノール <u>8</u>	3, 4-DCA <u>9</u>	リンデ [*] ン <u>9</u>
				•	
生物種の数	<u>11</u>	<u>16</u>	<u>8</u>	9	9
生物種の数 魚類	<u>11</u> 5	<u>16</u> 9	<u>8</u> 4	<u>9</u> 4	<u>9</u> 3
生物種の数 魚類 甲殻類	11 5 2	<u>16</u> 9 3	<u>8</u> 4	9 4 4	9 3 4

まとめ

- NOECかECx(本研究では,EC10)かの選択は種の感受性分布から 推定される95%の種を保護できる濃度に大きな影響を及ぼさないこ とが示唆された。
- そのため,種の感受性分布の推定にNOECを利用することは許容可 能であると結論づけることができる。
 - しかし,NOECは影響が"ゼロ"であることを意味するものではなく,影響 の大きさが明示されないため,その利用には十分な注意が必要である


EC10の利用が種の感受性分布に及ぼす影響

- 5つの化学物質について,NOECおよびEC10を用いて95%の種を保護で きる濃度(HC5s)を推定した結果,それらはほぼ同等の値であった
- それらHC5の95%信頼区間は大きく重複しており,NOECかEC10かの 選択はHC5の推定にほとんど影響を及ぼさないことが示唆された

NOECおよびLOECにおける減少割合 & NOECとEC10の関係

- 最良モデルにより推定されたNOEC及びLOECにおける減少割合の中央値 と範囲はそれぞれ,5.3 (0.0~67.6), 34.0 (2.7~99.8)%であった
- LOECの減少割合は0~100%にほぼ等しく分布していた
- NOECにおいて予測された減少割合が5%, 10%, 20%未満のものが, 全体のうちそれぞれおよそ50%,70%,85%程度あった
- EC10とNOECの比の中央値(範囲)は,1.3(0.1~6.5)であり, 本データ では平均的にEC10がNOECより高い濃度であることを示している

本研究は,経済産業省化学物質管理課 H25年度「化学物質のリスク評価手法の開発・改良に資する科学的 知見の充実に向けた調査」および 平成26-30年度文部科学省私立大学戦略的研究基盤形成支援事業 (S1411016) によって支援された。